APPENDIX A

Additional Photos of Flooding in Pembroke

Additional Flooding Photos

2003 Doran Street and D'Arcy Street Intersection

2003 Doran Street and D'Arcy Street Intersection

APPENDIX B

Floodlines for the 100-year Ottawa River Flow Event

Scale 1: 5,000

200

0

400 metres

Hoffman Lane Residences

Flood Elevation of 113.90

N

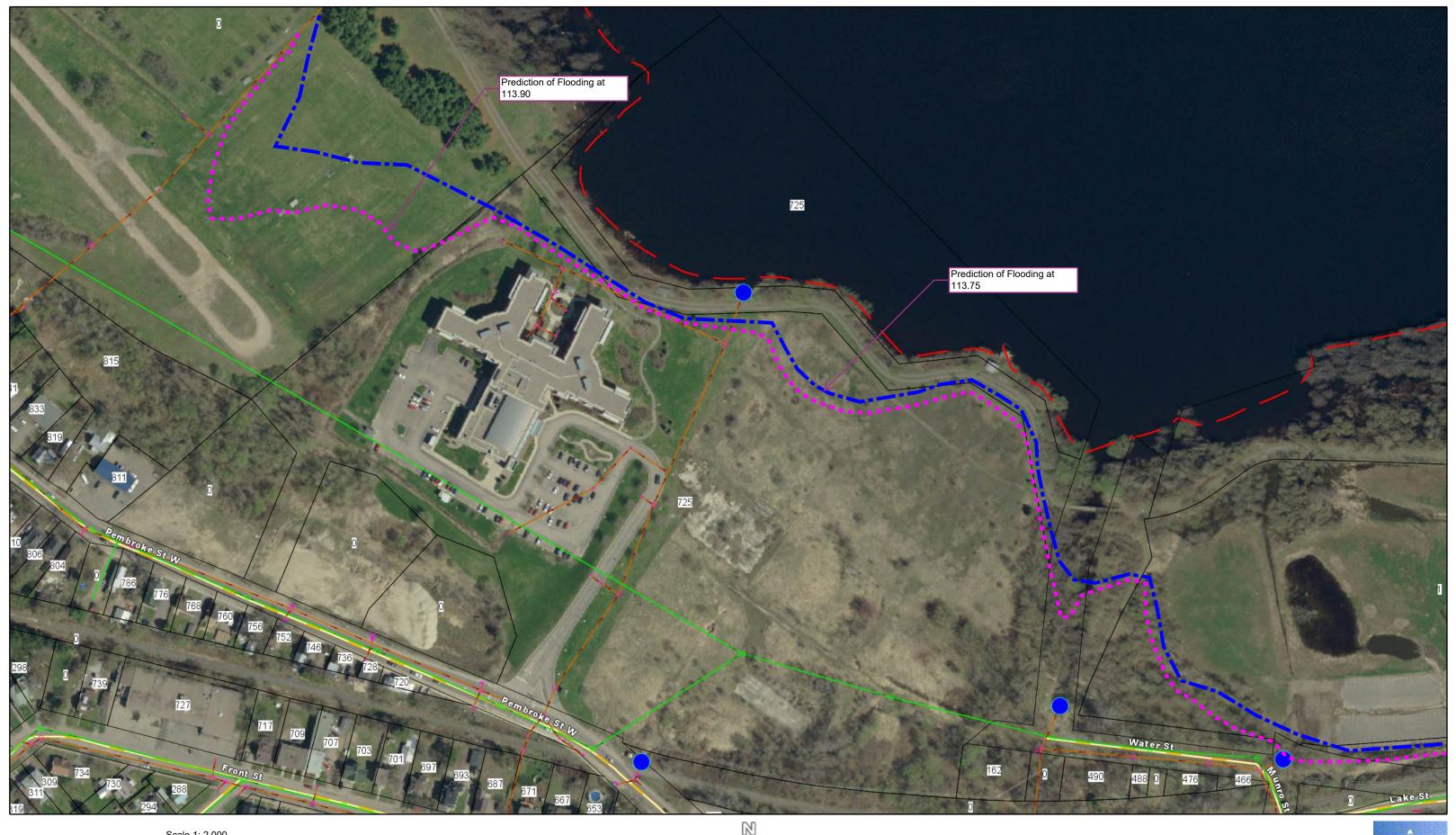
Scale 1: 1,000

50

31 Riverside Drive within potential

EP COF

GFRE F


Riverside Drive within potential flood area

31 Riverside Drive within potential flood area

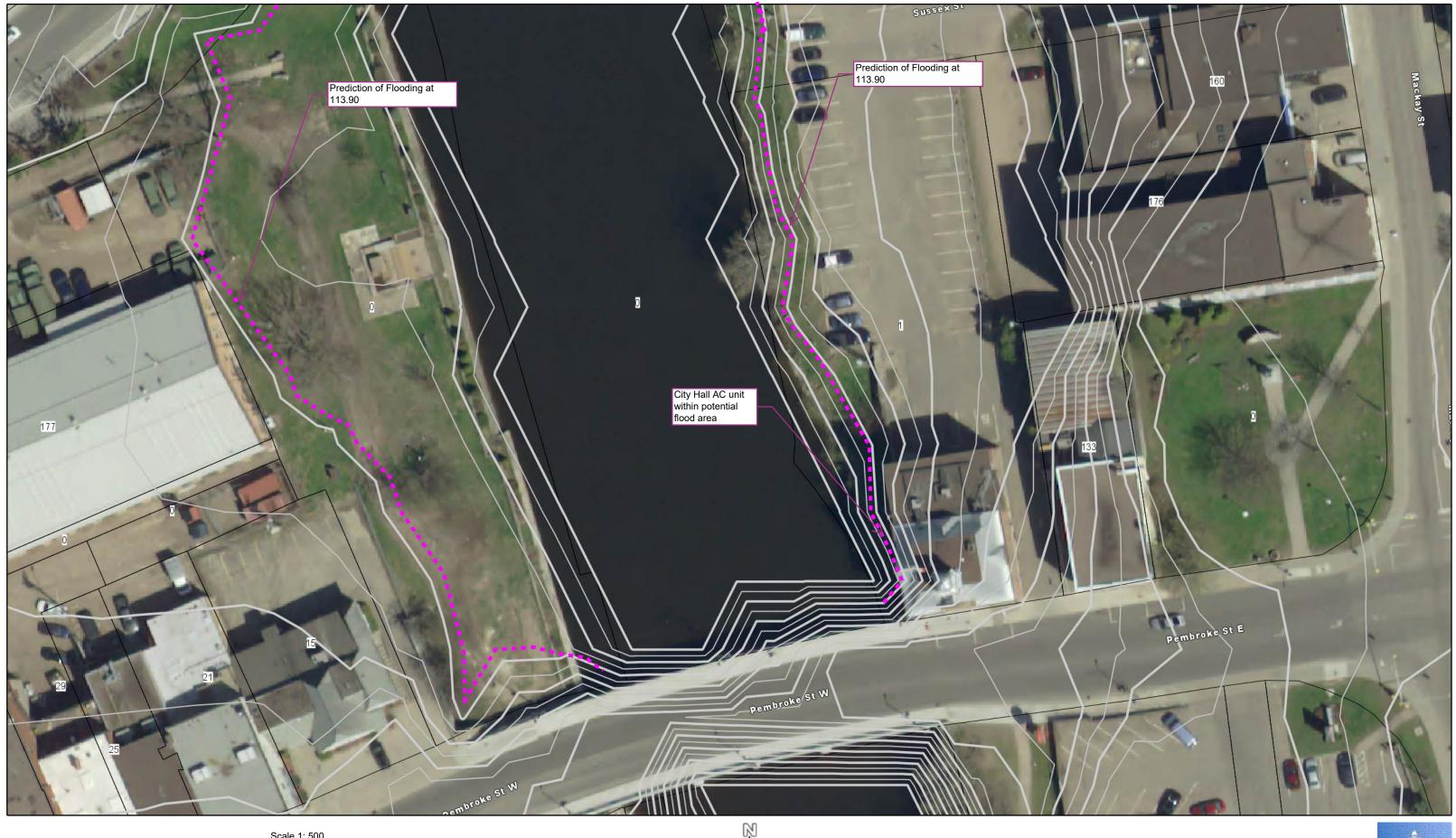
. Dr

-Tru-

Scale 1: 2,000

Algonquin College

Flood Elevation of 113.90

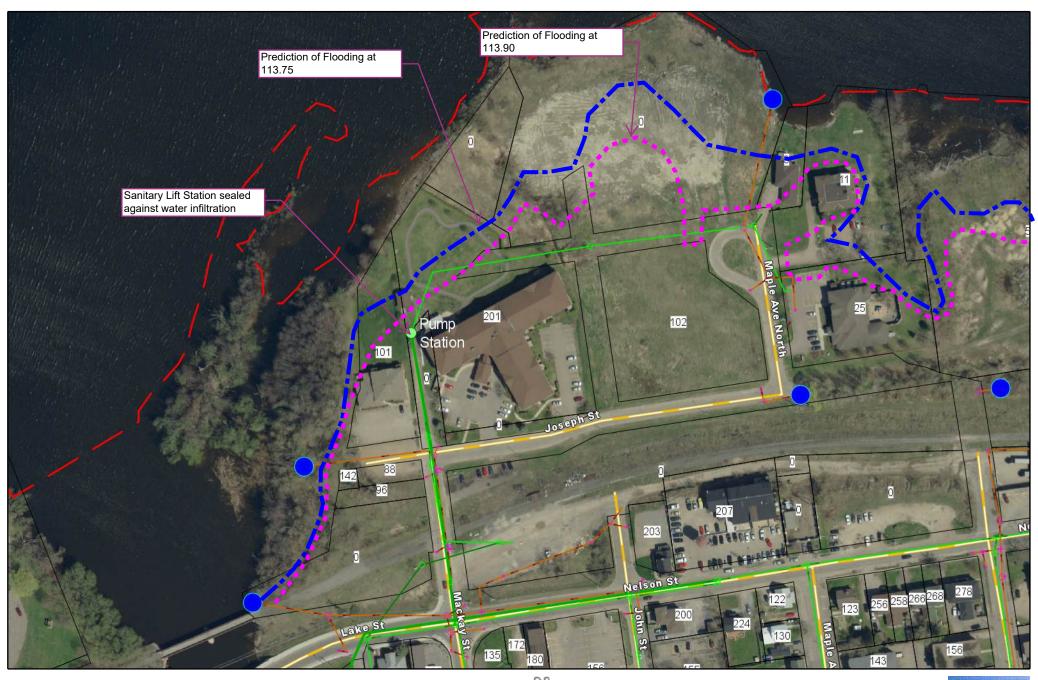


Scale 1: 1,000

Cornation Park and City Hall

Flood Elevation of 113.90

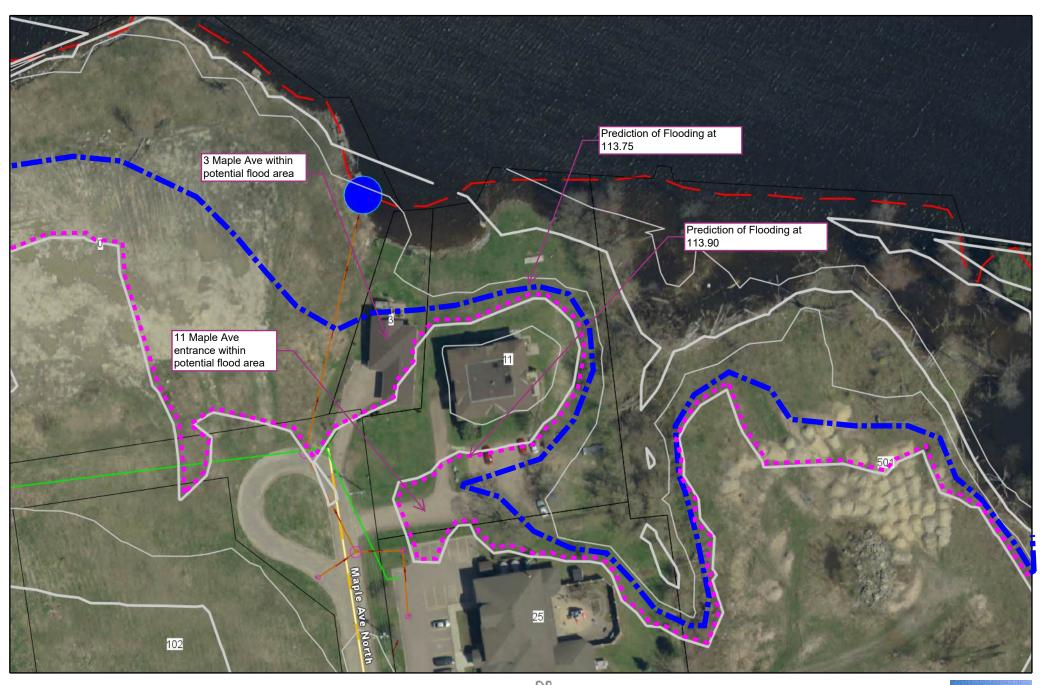
Scale 1: 500



Scale 1: 2,000

100

Supples Landing


Scale 1: 2,000

100

200 metres

Scale 1: 1,000

40

80 metres

Nelson Street Residences

Flood Elevation of 113.90

0

V

Scale 1: 500

Cedar Lane Residences

Water Elevation of 113.90

Scale 1: 1,000

APPENDIX C

Details of the Hydrological Model Inputs, Setup, Calibration, and Results

Table C.1. Summary of Channel Slope Variation					
Average Channel Slope (m/m)					
0.03140					
0.00199					
0.00058					
nch)					
0.01229					
0.00275					
0.00001					
0.00107					
0.00005					
0.00193					
0.00021					

Table C.1: Summary of Channel Slope Variation

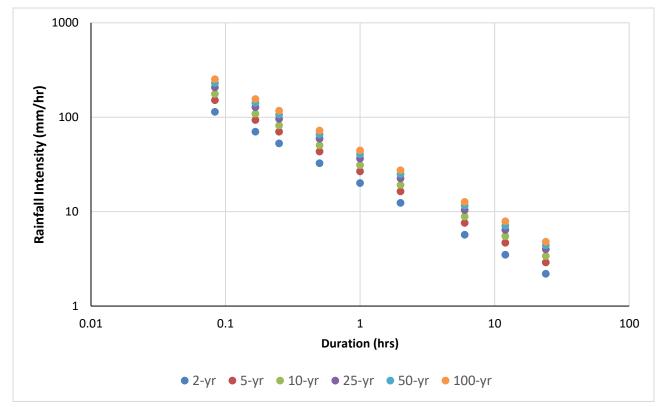


Figure C.1: IDF Curves for the Muskrat Watershed

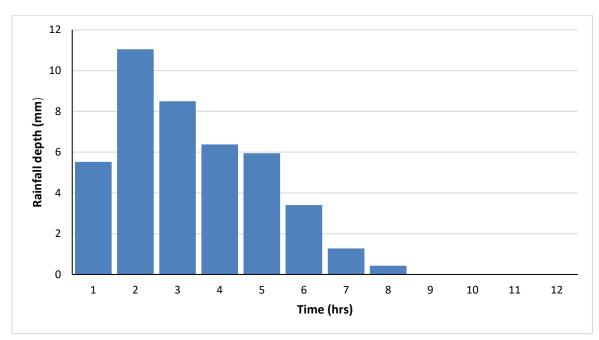


Figure C.2: Hyetograph for the 2-yr, 12-hr AES 30% Design Storm for Southern Ontario

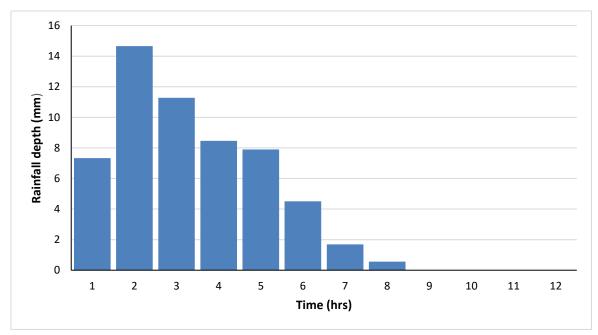
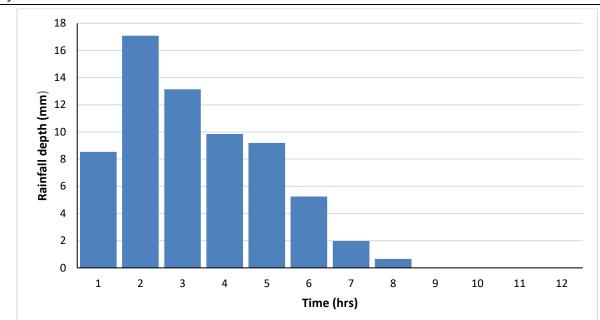



Figure C.3: Hyetograph for the 5-yr, 12-hr AES 30% Design Storm for Southern Ontario

City-Wide Flood Risk Assessment and Storm Outlet Review *City of Pembroke*

Figure C.4: Hyetograph for the 10-yr, 12-hr AES 30% Design Storm for Southern Ontario

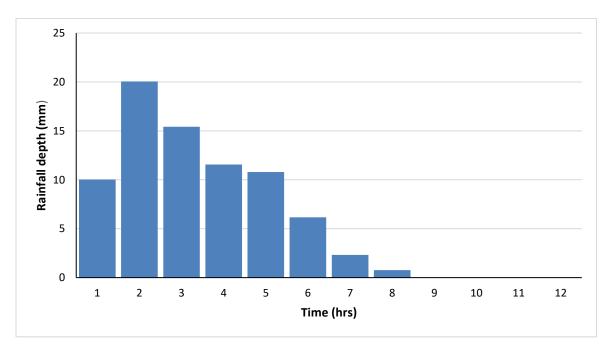
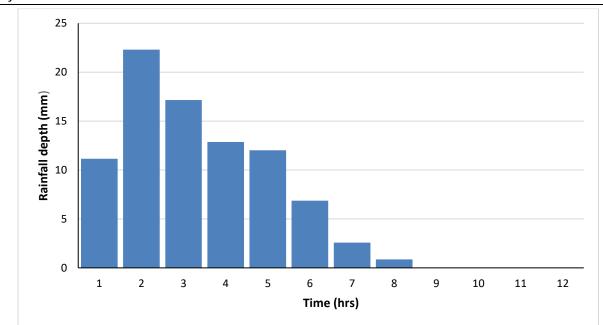



Figure C.5: Hyetograph for the 25-yr, 12-hr AES 30% Design Storm for Southern Ontario

City-Wide Flood Risk Assessment and Storm Outlet Review *City of Pembroke*

Figure C.6: Hyetograph for the 50-yr, 12-hr AES 30% Design Storm for Southern Ontario

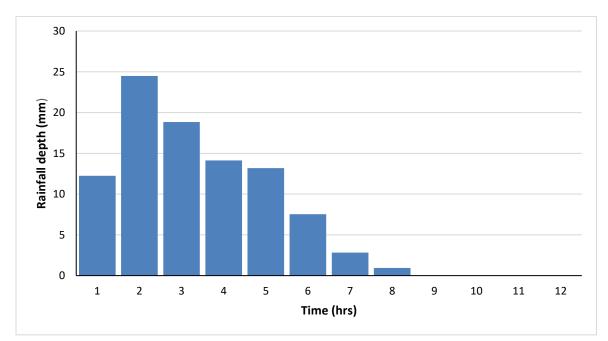


Figure C.7: Hyetograph for the 100-yr, 12-hr AES 30% Design Storm for Southern Ontario

Subbasin	Area	Slope	Initial	Composite	Composite	Impervious	Lag Time
ID	(km²)	(m/m)	Abstraction (mm)	CN, Summer	CN, Winter	Surface (%)	(min)
Sub-1	1.27	0.06062	4.93	75.32	92.83	29.53	12.01
Sub-2	21.72	0.08698	9.77	50.87	76.96	5.36	412.00
Sub-3	40.65	0.05361	8.94	54.39	80.38	2.07	112.43
Sub-4	22.36	0.07521	9.25	50.01	76.69	7.09	1242.88
Sub-5	10.01	0.03300	10.12	58.20	83.10	0.39	699.02
Sub-6	17.97	0.08296	9.60	47.55	74.51	3.65	111.30
Sub-7	35.79	0.10260	9.65	52.90	79.27	4.10	197.22
Sub-8	32.74	0.04006	9.27	51.67	78.08	3.46	266.39
Sub-9	30.80	0.08219	8.85	51.79	77.99	13.11	2379.30
Sub-10	30.54	0.02353	8.59	54.08	80.03	1.08	146.18
Sub-11	88.93	0.06744	9.23	50.80	77.23	8.13	3989.40
Sub-12	77.23	0.02569	8.61	56.43	81.65	1.59	551.22
Sub-13	23.95	0.02535	8.38	56.93	82.52	1.43	589.11
Sub-14	24.89	0.06158	9.37	47.50	74.48	1.43	894.19
Sub-15	79.30	0.04183	7.13	50.77	77.37	21.49	6651.30
Sub-16	100.68	0.04928	8.10	45.04	72.06	13.73	7776.00
Sub-17	83.29	0.02981	8.22	54.46	80.05	7.45	4848.60
Sub-18	61.07	0.08993	9.04	53.30	79.93	10.16	5153.70
Sub-19	17.37	0.09233	9.58	52.43	79.08	4.54	908.25
Sub-20	34.80	0.02951	8.74	53.96	79.99	1.92	819.72
Sub-21	2.07	0.07256	9.46	47.13	74.76	1.00	134.64
Sub-22	4.00	0.06161	8.82	46.32	73.66	1.21	90.93
Sub-23	117.00	0.10881	9.61	53.16	79.85	4.64	1504.50
Sub-24	3.61	0.10505	9.79	50.09	77.13	0.85	139.59
Sub-25	24.37	0.06097	9.40	53.89	80.53	5.57	4533.90
Sub-26	31.66	0.03408	8.73	48.83	75.32	1.36	263.06
Sub-27	4.97	0.03193	5.84	63.21	85.86	15.44	215.97
Sub-28	35.88	0.02489	8.34	53.54	79.60	0.37	155.82
Sub-29	16.55	0.04056	9.79	57.65	82.82	1.85	706.48
Sub-30	23.76	0.05223	8.57	49.57	75.54	13.40	2538.90
Sub-31	18.07	0.02208	7.97	59.83	84.49	2.81	2312.40
Sub-32	2.62	0.03152	5.48	70.23	89.81	25.77	36.70
Sub-33	23.91	0.02760	7.59	58.62	83.38	0.97	363.48

Table C.2: Subbasin Properties and Inputs

Reach ID	Length (m)	Slope (m/m)
Reach-1	1842.7	0.00045
Reach-2	4409.7	0.00046
Reach-3	11339.6	0.0002
Reach-4	11101.7	0.00046
Reach-5	2639.0	0.0008
Reach-6	1125.8	0.00061
Reach-7	6126.0	0.00042
Reach-8	3456.3	0.0005
Reach-9	4316.9	0.00185
Reach-9-1	1176.1	0.00016
Reach-9-2	3511.9	0.00302
Reach-10	1914.6	0.0011
Reach-11	7955.3	0.0001
Reach-12	8015.9	0.00001
Reach-12-1	4028.5	0.00001
Reach-13-1	2094.0	0.00001
Reach-13-2	2507.0	0.00001
Reach-14	6480.1	0.00002
Reach-15	8065.5	0.00048
Reach-15-1	8728.2	0.00006
Reach-16-1	11148.2	0.00125
Reach-17	6929.7	0.00033

Table C.3: Reach Properties

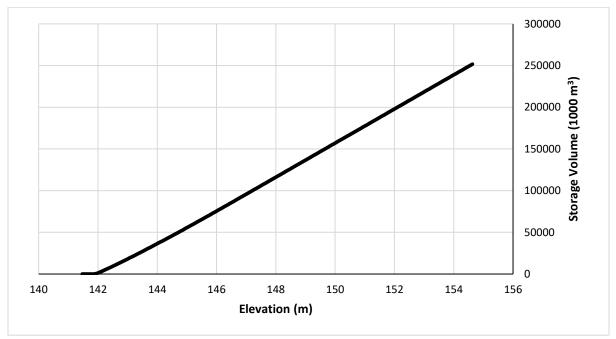


Figure C.8: Doré Lake Elevation-Storage Curve

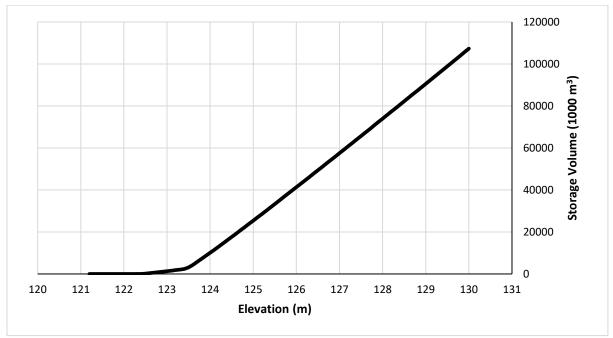


Figure C.9: Muskrat Lake Elevation-Storage Curve

City-Wide Flood Risk Assessment and Storm Outlet Review City of Pembroke

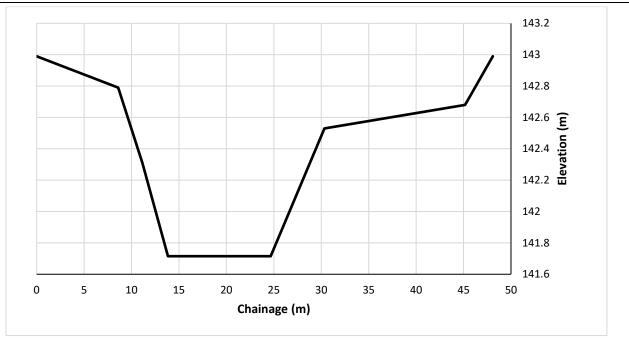


Figure C.10: Doré Lake Outlet 8-Point Cross-Section

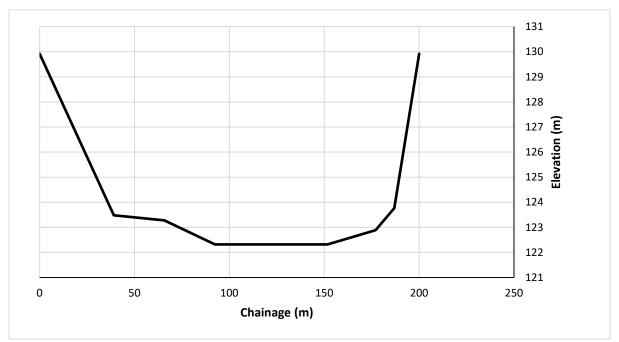
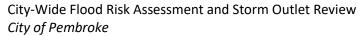



Figure C.11: Muskrat Lake Outlet 8-Point Cross-Section

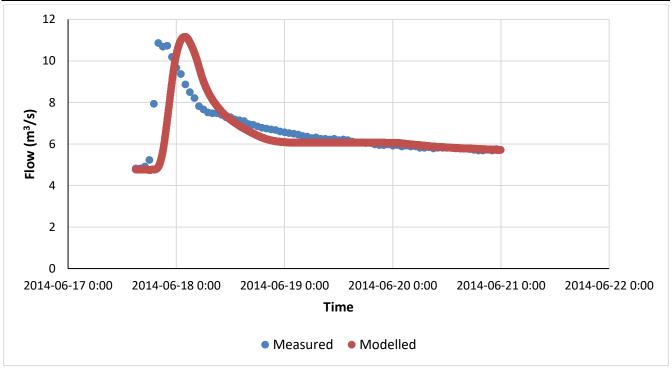


Figure C.12: Comparison of the Measured and Calibrated Model Flows for the Cal-1 Event in Muskrat River

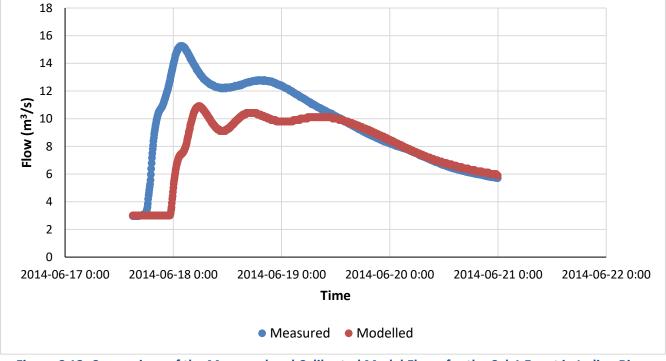
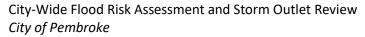



Figure C.13: Comparison of the Measured and Calibrated Model Flows for the Cal-1 Event in Indian River

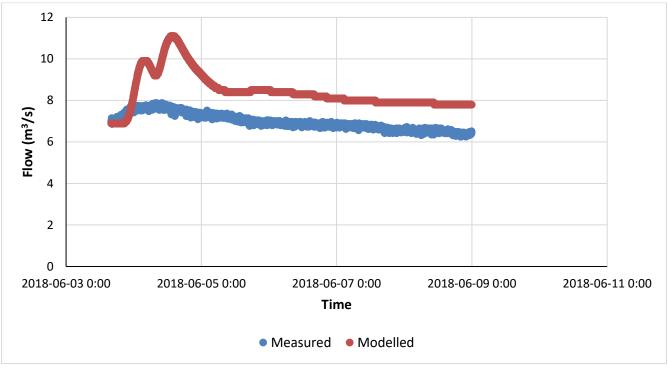


Figure C.14: Comparison of the Measured and Calibrated Model Flows for the Cal-2 Event in Muskrat River

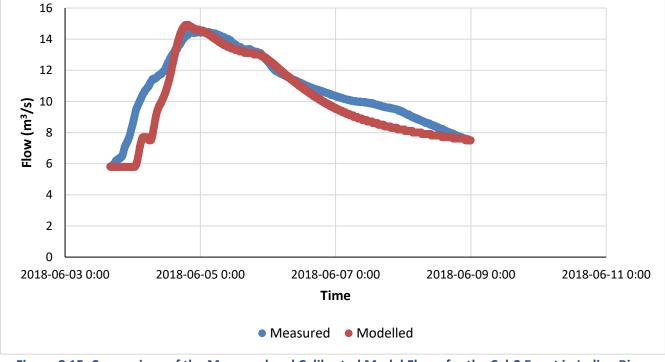
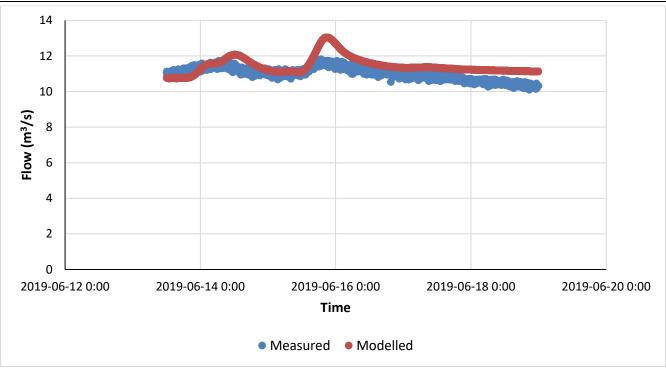



Figure C.15: Comparison of the Measured and Calibrated Model Flows for the Cal-2 Event in Indian River

City-Wide Flood Risk Assessment and Storm Outlet Review *City of Pembroke*

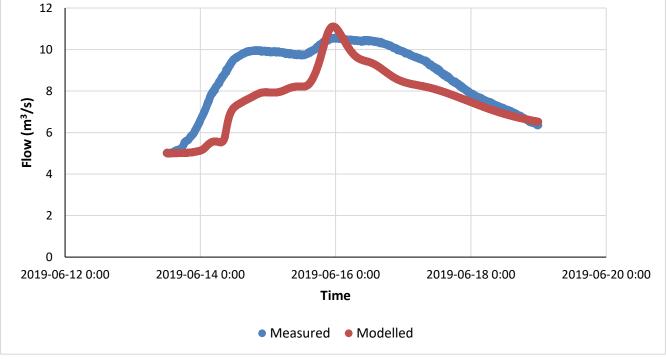


Figure C.17: Comparison of the Measured and Calibrated Model Flows for the Cal-3 Event in Indian River

Dry Conditions Average Conditions Wet Conditions

Table C.4: Variation in SCS Curve Number based on Antecedent Moisture Conditions (from CLOCA, 2017)

Dry Conditions	Average Conditions	Wet Conditions
40	60	78
39	59	77
38	58	76
37	57	75
36	56	75
35	55	74
34	54	73
33	53	72
32	52	71
31	51	70
31	50	70
30	49	69
29	48	68
28	47	67
27	46	66
26	45	65
25	44	64
25	43	63
24	42	62
23	41	61
22	40	60
21	39	59
21	38	58
20	37	57
19	36	56
18	35	55
18	34	54
17	33	53
16	32	52
16	31	51
15	30	50
12	25	43
9	20	37
6	15	30
4	10	22
2	5	13
0	0	0

City-Wide Flood Risk Assessment and Storm Outlet Review City of Pembroke

Land use	A	В	C	D
Woods*	21	44	58	64
Meadows	21	45	58	64
Cultivated*	31	39	46	51
Lawns	30	51	62	68
Dirt Lot	53	66	73	76
Gravel Lot	58	70	76	80
Bedrock	63	63	63	63
Bog	4	4	4	4
Fen	4	4	4	4
Marsh	31	31	31	31
Swamp	16	40	54	62

Table C.5: Calibrated CN Values for Average Antecedent Moisture Conditions (AMC I)

*Calibrated values

Table C.6: Calibrated CN Values for Average Antecedent Moisture Conditions (AMC II)						
Land use	A	В	С	D		
Woods*	39	64	76	81		
Meadows	38	65	76	81		
Cultivated*	50	59	66	69		
Lawns	49	69	79	84		
Dirt Lot	72	82	87	89		
Gravel Lot	76	85	89	91		
Bedrock	80	80	80	80		
Bog	10	10	10	10		
Fen	10	10	10	10		
Marsh	50	50	50	50		
Swamp	32	60	73	79		

Table C.C. Calibrated CNI Values for A Anteredent Meisture Conditions (ANAC II)

*Calibrated values

Land use	А	В	С	D
Woods*	59	81	89	92
Meadows	58	82	89	92
Cultivated*	70	77	82	85
Lawns	69	85	91	93
Dirt Lot	86	92	95	96
Gravel Lot	89	94	96	97
Bedrock	91	91	91	91
Bog	22	22	22	22
Fen	22	22	22	22
Marsh	70	70	70	70
Swamp	52	78	87	91

Table C.7: Calibrated CN Values for Average Antecedent Moisture Conditions (AMC III)

*Calibrated values

Table C.8: Calibrated CN Values for Moderately Dry Antecedent Moisture Conditions (Between AMC I and II)

Land use	А	В	С	D
Woods*	30	54	67	72.5
Meadows	29.5	55	67	72.5
Cultivated*	40.5	49	56	60
Lawns	39.5	60	70.5	76
Dirt Lot	62.5	74	80	82.5
Gravel Lot	67	77.5	82.5	85.5
Bedrock	71.5	71.5	71.5	71.5
Bog	7	7	7	7
Fen	7	7	7	7
Marsh	40.5	40.5	40.5	40.5
Swamp	24	50	63.5	70.5

*Calibrated values

Table C.9: Summer Peak Flows under the 2-yr, 5-yr, 10-yr, 25-yr, 50-yr, and 100-yr Events						
Junction ID	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Jun-1	24.9	45.8	63.6	89.7	111.2	132.3
Jun-2	25.1	46.2	64	90.2	111.7	132.9
Jun-3	16.9	30	40.3	54.5	67.8	85.1
Jun-4	10.7	19.2	26.4	36.6	45.5	55.1
Jun-5	10.7	19.2	26.4	36.6	45.4	54.8
Jun-6	10.1	18.4	25.4	35.4	44	53.1
Jun-7	9.8	17.2	23.1	31.2	37.9	44.9
Jun-8	9.4	16.5	22	29.7	36.1	42.6
Jun-9	3.5	6	8	10.7	13	15.3
Jun-9-1	3.5	6	8	10.7	12.9	15.3
Jun-9-2	3.3	5.6	7.5	10.1	12.2	14.5
Jun-10	13.7	21.3	27.3	35.6	42.5	49.7
Jun-11	10.6	17.9	24.6	35.1	44.4	54.4
Jun-12	10.8	17.7	23.6	31.9	39.1	46.6
Jun-13	15.6	25.3	33	43.7	52.6	61.7
Jun-14	6.3	8.4	10.1	12.3	14.2	16.1
Jun-15	7.1	10.2	13.3	18.9	24.3	30.6
Jun-16	8.4	15.1	20.4	27.8	34	40.4
Jun-17	12.4	25.8	38	57.4	72.3	87.5
Jun-18	13.2	20.1	25.6	33.3	39.7	46.3
Jun-19	3.5	3.5	3.5	3.9	4.2	4.6
Jun-20	9.1	13.5	17.6	23.7	29.2	35.1
Jun-21	8.9	13	16.9	22.8	28.1	33.9
Jun-22	6.3	8.4	10.1	12.3	14.2	16.1

Table C.9: Summer Peak Flows under the 2-yr, 5-yr, 10-yr, 25-yr, 50-yr, and 100-yr Events

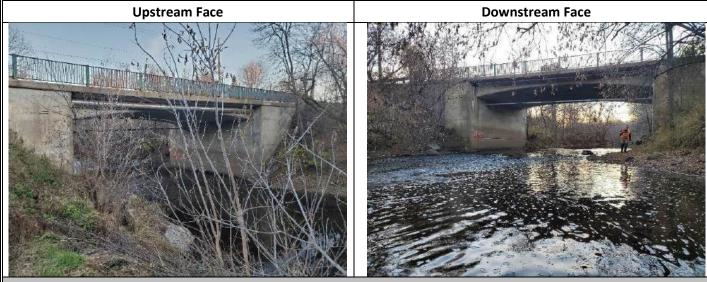
Junction ID	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Jun-1	57.2	105.4	139.1	183.7	219.9	256.1
Jun-2	57.7	105.9	139.8	184.9	221.5	258
Jun-3	38.6	65.2	92	130.7	162.9	194.1
Jun-4	23.8	43	58.1	80	97.1	113.7
Jun-5	23.8	42.6	57.6	78.9	95.5	112
Jun-6	23	41.1	55.8	76.2	92.3	108.4
Jun-7	21.5	36.7	48	62.7	74.9	86.5
Jun-8	20.6	34.9	45.6	59.4	70.4	81.4
Jun-9	7	11.9	15.6	20.5	24.4	28.3
Jun-9-1	7	11.9	15.6	20.5	24.4	28.3
Jun-9-2	6.5	11.3	14.8	19.5	23.2	27
Jun-10	25.2	40.9	52.6	67.7	79.8	91.8
Jun-11	21.8	41.5	57.6	79.3	97	115.1
Jun-12	21.2	36.8	48.8	64.7	77.5	90.3
Jun-13	30.9	50.8	65.5	84.4	99.5	114.5
Jun-14	8.3	12.1	15	18.8	21.8	24.8
Jun-15	9.5	19.8	29.7	44.3	57.1	70.7
Jun-16	20.3	34.3	44.6	57.9	68.6	79.1
Jun-17	34.5	69.6	94.3	127.4	153.6	179.8
Jun-18	22.8	36.8	47.3	61.1	72.1	83.2
Jun-19	2.7	3.5	4.1	4.9	5.5	6.2
Jun-20	15.4	26.9	36.4	49.7	60.9	72.6
Jun-21	14.7	25.8	35	48	59	70.5
Jun-22	8.2	12.1	15	18.8	21.8	24.8

Table C.10: Winter Peak Flows under the 2-yr, 5-yr, 10-yr, 25-yr, 50-yr, and 100-yr Events

APPENDIX D

Hydraulic Structure Inventory Sheets

Hydraulic Structure Data Sheet				
General I	nformation			
Date (Month DD, YYYY)	November 9, 2021			
Field Crew Initial	D.M., G.D.			
Municipality	City of Pembroke			
Watershed Name	Muskrat			
Creek or Tributary Name	Indian River			
UTM Co-ordinates	N: 5075651 m, E: 334600 m			
Street Name	Boundary Road			
Structure	Information			
Structure Type	Bridge			
Number of Cells	1			
Each Cell Shape	Flat			
Each Cell Material	Concrete			
Each Cell Dimension in Meters (Height x Width or Diameter)	4.88 m x 26.04 m			
Open Footing (Y/N)	Y			
Structure Length in Meters (inlet to outlet)	11.55 m			
Additional Informa	tion where applicable			
Pier Width in Meters				
Parapet Present (Y/N)	Y			
Parapet Length in Meters	38.91 m			
Parapet Height in Meters	0.83 m			
Skew Angle in Degrees				


Photographs

Additional Comments

Hydraulic Structure Data Sheet				
General I	nformation			
Date (Month DD, YYYY)	November 10, 2021			
Field Crew Initial	D.M., G.D.			
Municipality	City of Pembroke			
Watershed Name	Muskrat			
Creek or Tributary Name	Indian River			
UTM Co-ordinates	N: 507602 m, E: 335053 m			
Street Name	Christie Street			
Structure	Information			
Structure Type	Bridge			
Number of Cells	1			
Each Cell Shape	Arched			
Each Cell Material	Concrete			
Each Cell Dimension in Meters (Height x Width or Diameter)	6.68 m x 16.72 m			
Open Footing (Y/N)	Y			
Structure Length in Meters (inlet to outlet)	13.5 m			
Additional Informa	tion where applicable			
Pier Width in Meters				
Parapet Present (Y/N)	N			
Parapet Length in Meters				
Parapet Height in Meters				
Skew Angle in Degrees				

Photographs

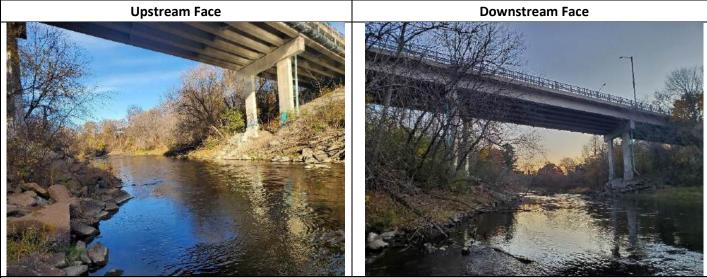
Additional Comments

Hydraulic Structure Data Sheet	
General Information	
Date (Month DD, YYYY)	November 11, 2021
Field Crew Initial	D.M., G.D.
Municipality	City of Pembroke
Watershed Name	Muskrat
Creek or Tributary Name	Indian River
UTM Co-ordinates	N: 5076270 m, E: 335449 m
Street Name	N/A, near Miller Street @ Indian Lane
Structure Information	
Structure Type	Pedestrian bridge
Number of Cells	1
Each Cell Shape	Flat
Each Cell Material	Concrete
Each Cell Dimension in Meters (Height x Width or Diameter)	3.27 m x 26.44 m
Open Footing (Y/N)	Y
Structure Length in Meters (inlet to outlet)	1.85 m
Additional Information where applicable	
Pier Width in Meters	
Parapet Present (Y/N)	Ν
Parapet Length in Meters	
Parapet Height in Meters	
Skew Angle in Degrees	

Photographs

Additional Comments

Small wingwalls present on both U/S and D/S of bridge, and on both right and left sides


Hydraulic Struc	cture Data Sheet									
General Information										
Date (Month DD, YYYY)	November 11, 2021									
Field Crew Initial	D.M., G.D.									
Municipality	City of Pembroke									
Watershed Name	Muskrat									
Creek or Tributary Name	Muskrat River									
UTM Co-ordinates	N: 5075177 m, E: 335730 m									
Street Name	Bennett Street									
Structure	Information									
Structure Type	Bridge									
Number of Cells	3									
Each Cell Shape	Flat									
Each Cell Material	Concrete									
Each Cell Dimension in Meters (Height x Width or Diameter)	From left to right (looking D/S), without piers: 1. 7.97 m x 13.01 m 2. 8.05 m x 14.91 m 3. 5.82 m x 13.10 m									
Open Footing (Y/N)	Υ									
Structure Length in Meters (inlet to outlet)	11.86 m									
Additional Informa	tion where applicable									
Pier Width in Meters	1.1 m									
Parapet Present (Y/N)	Y									
Parapet Length in Meters	52.14 m									
Parapet Height in Meters	0.9 m									
Skew Angle in Degrees										

Additional Comments

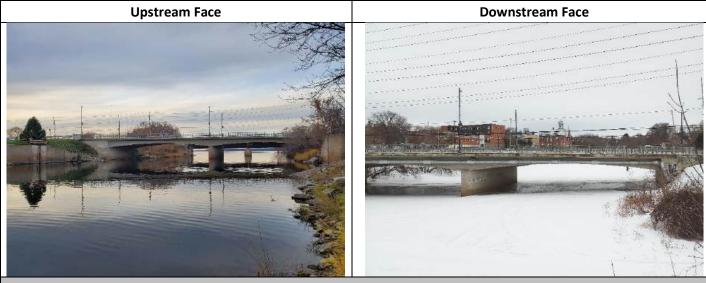
Hydraulic Strue	cture Data Sheet
General I	nformation
Date (Month DD, YYYY)	November 10, 2021
Field Crew Initial	D.M., G.D.
Municipality	City of Pembroke
Watershed Name	Muskrat
Creek or Tributary Name	Muskrat River
UTM Co-ordinates	N: 5076619 m, E: 335980 m
Street Name	Mary Street
Structure	Information
Structure Type	Bridge
Number of Cells	4
Each Cell Shape	Flat
Each Cell Material	Concrete
Each Cell Dimension in Meters (Height x Width or Diameter)	From left to right (looking D/S), without piers:: 1. 5.74 m x 11.88 m 2. 9.56 m x 28.14 m 3. 9.38 m x 25.68 m 4. 9.20 m x 29.52 m
Open Footing (Y/N)	Y
Structure Length in Meters (inlet to outlet)	14.2 m
Additional Informa	tion where applicable
Pier Width in Meters	1.5 m
Parapet Present (Y/N)	N
Parapet Length in Meters	
Parapet Height in Meters	
Skew Angle in Degrees	25
Phot	ographs

Downstream Face

Additional Comments

Hydraulic Strue	cture Data Sheet									
General I	nformation									
Date (Month DD, YYYY)	November 9, 2021									
Field Crew Initial	D.M., G.D.									
Municipality	City of Pembroke									
Watershed Name	Muskrat									
Creek or Tributary Name	Muskrat River									
UTM Co-ordinates	N: 5076939 m, E: 335946 m									
Street Name	Pembroke Street W									
Structure Information										
Structure Type	Bridge									
Number of Cells	3									
Each Cell Shape	Arched									
Each Cell Material	Concrete									
Each Cell Dimension in Meters (Height x Width or Diameter)	Without piers: 5.49 m x 14.53 m									
Open Footing (Y/N)	Y									
Structure Length in Meters (inlet to outlet)	15.59 m									
Additional Informa	tion where applicable									
Pier Width in Meters	4.68 m									
Parapet Present (Y/N)	Y									
Parapet Length in Meters	U/S: 58.33 m D/S: 68.87 m									
Parapet Height in Meters	Small "lip": 0.19 m, Additional height: 0.7 m Width: 1.20 m, Gap width: 2.58 m									
Skew Angle in Degrees										
	aranha									

Upstream Face



Downstream Face

Additional Comments

Hydraulic Struc	cture Data Sheet									
General Information										
Date (Month DD, YYYY)	November 9, 2021									
Field Crew Initial	D.M., G.D.									
Municipality	City of Pembroke									
Watershed Name	Muskrat									
Creek or Tributary Name	Muskrat River									
UTM Co-ordinates	N: 5077095 m, E: 335902 m									
Street Name	Lake Street									
Structure	Information									
Structure Type	Bridge									
Number of Cells	2									
Each Cell Shape	Arched									
Each Cell Material	Concrete									
Each Cell Dimension in Meters (Height x Width or Diameter)	Without pier: 5.51 m x 26.42 m									
Open Footing (Y/N)	Y									
Structure Length in Meters (inlet to outlet)	14.96 m									
Additional Information	tion where applicable									
Pier Width in Meters	0.75 m									
Parapet Present (Y/N)	Ν									
Parapet Length in Meters										
Parapet Height in Meters										
Skew Angle in Degrees	29									

Additional Comments

Hydraulic Struc	cture Data Sheet									
General Information										
Date (Month DD, YYYY)	November 9, 2021									
Field Crew Initial	D.M., G.D.									
Municipality	City of Pembroke									
Watershed Name	Muskrat									
Creek or Tributary Name	Muskrat River									
UTM Co-ordinates	N: 5077137 m, E: 335890 m									
Street Name	N/A (Old Railway Bridge)									
Structure	Information									
Structure Type	Old Railway Bridge Converted into Pedestrian Bridge									
Number of Cells	2									
Each Cell Shape	Flat									
Each Cell Material	Steel									
Each Cell Dimension in Meters (Height x Width or Diameter)	Without pier: 5.16 m x 23.44 m									
Open Footing (Y/N)	Y									
Structure Length in Meters (inlet to outlet)	4.46 m									
Additional Information	tion where applicable									
Pier Width in Meters	2.51 m									
Parapet Present (Y/N)	Y									
Parapet Length in Meters	51.95 m									
Parapet Height in Meters	2.66 m									
Skew Angle in Degrees										

Additional Comments

Pier width estimated from photographs to be approx. equal to parapet height

APPENDIX E

HEC-RAS Model Output Results

	e: Winter 100yr	D: 01			0.7.1.	Nr. 01 51		0.1111.0	5 0 F	50.01	141011	F1 A	T 14/2 101	E 1 # 0
River	Reach	River Sta	Profile	Plan	Q Total (m3/s)	Min Ch El (m)	W.S. Elev (m)	Crit W.S. (m)	E.G. Elev (m)	E.G. Slope (m/m)	Vel Chnl (m/s)	Flow Area (m2)	Top Width (m)	Froude # C
Muskrat River	Main 2	2572	Winter 100yr	Winter - 113.621m	83.00	116.61	118.88	(11)	119.13	0.002746	2.24	40.07	24.81	
Muskrat River	Main_2	2572	Summer 100yr	Summer - 113.621m	46.50	116.61	118.19		118.40	0.004198	2.03	23.67	22.53	
/luskrat River	Main_2	2572	Summer 100yr	Summer - 112 m	46.50	116.61	118.19		118.40	0.004198	2.03	23.67	22.53	
Muskrat River	Main_2	2572	Summer 100yr	Summer - 111.082m	46.50	116.61	118.19		118.40	0.004198	2.03	23.67	22.53	
		0500			00.00	440.47	440.70	447.07	440.00	0.000045	0.00			
Auskrat River Auskrat River	Main_2 Main_2	2532 2532	Winter 100yr Summer 100yr	Winter - 113.621m Summer - 113.621m	83.00 46.50	116.17 116.17	118.78 118.09	117.97 117.53	119.03 118.26	0.002215 0.002524	2.26	41.85 26.78	23.11 20.48	
luskrat River	Main_2	2532	Summer 100yr	Summer - 113.62 m Summer - 112 m	46.50	116.17	118.09	117.53	118.26	0.002524	1.00	26.78	20.48	
luskrat River	Main_2	2532	Summer 100yr	Summer - 111.082m	46.50	116.17	118.09	117.53	118.26	0.002524	1.88	26.78	20.48	
/luskrat River	Main_2	2521			Bridge									
Auskrat River	Main_2	2506	Winter 100yr	Winter - 113.621m	83.00	116.43	118.60	117.87 117.47	118.84	0.002373	2.17	40.37	24.35	
luskrat River luskrat River	Main_2 Main_2	2506 2506	Summer 100yr Summer 100yr	Summer - 113.621m Summer - 112 m	46.50 46.50	116.43 116.43	117.89 117.89	117.47	118.08 118.08	0.003307 0.003307	1.90 1.90	24.74 24.74	20.70 20.70	
luskrat River	Main_2	2506	Summer 100yr	Summer - 111.082m	46.50	116.43	117.89	117.47	118.08	0.003307	1.90	24.74	20.70	
luskrat River	Main_2	2494	Winter 100yr	Winter - 113.621m	83.00	116.59	118.63		118.76	0.001526	1.65	53.29	34.84	
luskrat River	Main_2	2494	Summer 100yr	Summer - 113.621m	46.50	116.59	117.88		118.01	0.002878	1.59	29.62	29.56	
luskrat River	Main_2	2494	Summer 100yr	Summer - 112 m	46.50	116.59	117.88		118.01	0.002878	1.59	29.62	29.56	
luskrat River	Main_2	2494	Summer 100yr	Summer - 111.082m	46.50	116.59	117.88		118.01	0.002878	1.59	29.62	29.56	
luskrat River	Main_2	2430	Winter 100yr	Winter - 113.621m	83.00	116.37	118.56		118.67	0.001081	1.49	58.06	34.21	
luskrat River	Main 2	2430	Summer 100yr	Summer - 113.621m	46.50	116.37	117.75		117.85	0.001885	1.40	33.37	28.64	
luskrat River	Main_2	2430	Summer 100yr	Summer - 112 m	46.50	116.37	117.75		117.85	0.001884	1.40		28.64	
uskrat River	Main_2	2430	Summer 100yr	Summer - 111.082m	46.50	116.37	117.75		117.85	0.001884	1.40	33.37	28.64	
luskrat River	Main_2	2351	Winter 100yr	Winter - 113.621m	83.00	115.97	118.49		118.59	0.000923	1.51	79.63	55.08	
uskrat River uskrat River	Main_2 Main_2	2351 2351	Summer 100yr Summer 100yr	Summer - 113.621m Summer - 112 m	46.50 46.50	115.97 115.97	117.58 117.58		117.71 117.71	0.001857 0.001857	1.55	33.03 33.03	39.63 39.63	
uskrat River uskrat River	Main_2 Main_2	2351	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	46.50	115.97	117.58		117.71	0.001857	1.55	33.03	39.63	
			Linia 100yi		40.00	. 10.01				0.001007	1.33	33.03	33.03	
uskrat River	Main_2	2284	Winter 100yr	Winter - 113.621m	83.00	115.77	118.47		118.53	0.000575	1.23	105.94	56.96	
uskrat River	Main_2	2284	Summer 100yr	Summer - 113.621m	46.50	115.77	117.52		117.59	0.001172	1.27	52.95	54.33	
uskrat River	Main_2	2284	Summer 100yr	Summer - 112 m	46.50	115.77	117.52		117.59	0.001172	1.27	52.95	54.33	
uskrat River	Main_2	2284	Summer 100yr	Summer - 111.082m	46.50	115.77	117.52		117.59	0.001172	1.27	52.95	54.33	
underset Diverse	Main 2	2201	Minter 400 m	Winter 440.004m	83.00	115.16	118.45		440.50	0.000296	1.01	96.83	46.32	
uskrat River uskrat River	Main_2 Main_2	2201	Winter 100yr Summer 100yr	Winter - 113.621m Summer - 113.621m	46.50	115.16	116.45		118.50 117.53	0.000296	0.87	57.50	46.32	
uskrat River	Main_2	2201	Summer 100yr	Summer - 112 m	46.50	115.16	117.50		117.53	0.000362	0.87	57.51	34.22	
uskrat River	Main_2	2201	Summer 100yr	Summer - 111.082m	46.50	115.16	117.50		117.53	0.000362	0.87	57.51	34.22	
uskrat River	Main_2	2137	Winter 100yr	Winter - 113.621m	83.00	115.41	118.39	116.71	118.47	0.000529	1.30	76.69	39.11	
uskrat River	Main_2	2137	Summer 100yr	Summer - 113.621m	46.50	115.41	117.44	116.33	117.50	0.000678	1.12	45.83	30.31	
uskrat River	Main_2	2137	Summer 100yr	Summer - 112 m	46.50	115.41	117.44	116.33	117.50	0.000678	1.12	45.83	30.31	
uskrat River	Main_2	2137	Summer 100yr	Summer - 111.082m	46.50	115.41	117.44	116.33	117.50	0.000678	1.12	45.83	30.31	
uskrat River	Main_2	2030	Winter 100yr	Winter - 113.621m	83.00	114.96	118.41	115.98	118.43	0.000116	0.67	165.00	64.56	
uskrat River	Main_2	2030	Summer 100yr	Summer - 113.621m	46.50	114.96	117.44	115.69	117.46	0.000128	0.56	104.36	61.20	
uskrat River	Main_2	2030	Summer 100yr	Summer - 112 m	46.50	114.96	117.44	115.69	117.46	0.000128	0.56	104.36	61.20	
uskrat River	Main_2	2030	Summer 100yr	Summer - 111.082m	46.50	114.96	117.44	115.69	117.46	0.000128	0.56	104.36	61.20	
uskrat River uskrat River	Main_1 Main_1	1931 1931	Winter 100yr Summer 100yr	Winter - 113.621m Summer - 113.621m	259.90 138.10	115.05 115.05	117.85		118.31 117.36	0.003042	3.02	92.44 63.49	40.87 36.57	
luskrat River	Main_1	1931	Summer 100yr	Summer - 112 m	138.10	115.05	117.11		117.36	0.002570	2.24	63.50	36.57	
uskrat River	Main_1	1931	Summer 100yr	Summer - 111.082m	138.10	115.05	117.11		117.36	0.002570	2.24	63.50	36.57	
uskrat River	Main_1	1764	Winter 100yr	Winter - 113.621m	259.90	114.67	117.38	116.68	117.79	0.002986	2.89	115.75	82.87	
uskrat River	Main_1	1764	Summer 100yr	Summer - 113.621m	138.10	114.67	116.65	116.04	116.91	0.002867	2.26	63.59	39.67	
uskrat River	Main_1	1764	Summer 100yr	Summer - 112 m	138.10	114.67	116.65	116.04	116.91	0.002865	2.26	63.61	39.68	
uskrat River	Main_1	1764	Summer 100yr	Summer - 111.082m	138.10	114.67	116.65	116.04	116.91	0.002865	2.26	63.61	39.68	
uskrat River	Main 1	1638	Winter 100yr	Winter - 113.621m	259.90	114.51	116.46	116.39	117.18	0.008074	3.79	75.72	50.82	
uskrat River uskrat River	Main_1	1638	Summer 100yr	Summer - 113.621m	138.10	114.51	116.46	115.78	117.10	0.005712	2.67	54.58	49.25	
uskrat River	Main_1	1638	Summer 100yr	Summer - 112 m	138.10	114.51	116.04	115.78	116.40	0.005778	2.68	54.35	49.23	
uskrat River	Main_1	1638	Summer 100yr	Summer - 111.082m	138.10	114.51	116.04	115.78	116.40	0.005778	2.68	54.35	49.23	
uskrat River	Main_1	1562	Winter 100yr	Winter - 113.621m	259.90	114.25	115.92	115.85	116.49		3.34	79.83	63.99	
uskrat River uskrat River	Main_1 Main_1	1562 1562	Summer 100yr	Summer - 113.621m Summer - 112 m	138.10 138.10	114.25 114.25	115.45	115.40	115.83 115.83	0.010425	2.71	51.09 51.49	57.78 57.83	
uskrat River	Main_1 Main_1	1562	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	138.10	114.25	115.46 115.46	115.40 115.40	115.83	0.010159	2.69	51.49	57.83	
										2.010100	2.00	01.40	01.00	
uskrat River	Main_1	1496	Winter 100yr	Winter - 113.621m	259.90	113.68	115.74	115.28	116.05	0.003566	2.55	120.57	85.99	
uskrat River	Main_1	1496	Summer 100yr	Summer - 113.621m	138.10	113.68	115.17	114.83	115.38	0.003855	2.06		69.90	
uskrat River	Main_1	1496	Summer 100yr	Summer - 112 m	138.10	113.68	115.24	114.83	115.42		1.94	78.91	78.21	
uskrat River	Main_1	1496	Summer 100yr	Summer - 111.082m	138.10	113.68	115.24	114.83	115.42	0.003175	1.94	78.91	78.21	
uskrat River	Main_1	1365	Winter 100yr	Winter - 113.621m	259.90	112.78	115.44		115.67	0.002201	2.39	170.77	130.41	
uskrat River	Main_1	1365	Summer 100yr	Summer - 113.621m	138.10	112.78	114.51	114.18	114.82	0.004632	2.50	62.64	82.53	
uskrat River	Main_1	1365	Summer 100yr	Summer - 112 m	138.10	112.78	114.25	114.18	114.74		3.10	45.91	44.32	
uskrat River	Main_1	1365	Summer 100yr	Summer - 111.082m	138.10	112.78	114.25	114.18	114.74		3.10	45.91	44.32	
		1000												
uskrat River	Main_1	1233	Winter 100yr	Winter - 113.621m	259.90	111.36	115.33		115.47	0.000781	1.89	234.65	160.66	
iskrat River iskrat River	Main_1 Main_1	1233 1233	Summer 100yr Summer 100yr	Summer - 113.621m Summer - 112 m	138.10 138.10	111.36 111.36	114.42 114.13		114.54 114.29	0.000808	1.59	108.04 90.31	71.45	
skrat River skrat River	Main_1 Main_1	1233	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	138.10	111.36	114.13		114.29	0.001204	1.81	90.31	52.83	
									. 14.23	0.001204	1.01	30.JZ	52.03	
uskrat River	Main_1	1170	Winter 100yr	Winter - 113.621m	259.90	110.91	115.30		115.44	0.000603	1.83	244.99	171.80	
iskrat River	Main_1	1170	Summer 100yr	Summer - 113.621m	138.10	110.91	114.40		114.50	0.000512	1.44	112.62	73.83	
uskrat River	Main_1	1170	Summer 100yr	Summer - 112 m	138.10	110.91	114.10		114.22	0.000719	1.60	97.24	45.01	
uskrat River	Main_1	1170	Summer 100yr	Summer - 111.082m	138.10	110.91	114.10		114.22	0.000719	1.60	97.24	45.01	
uskrat River	Main_1	1102	Winter 100yr	Winter - 113.621m	259.90	110.81	115.12		115.38	0.001148	2.46	191.11	154.57	
uskrat River	Main_1 Main_1	1102	Summer 100yr	Summer - 113.621m	138.10	110.81	114.26 113.91		114.44		1.92	87.20 72.28	52.50 35.67	
inkrot Piner	Main_1 Main_1	1102 1102	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	138.10 138.10	110.81 110.81	113.91		114.15 114.15	0.001438	2.19	72.28	35.67	
		1102	Summer rouyr		130.10	110.01	113.91		114.15	0.001438	2.19	12.28	30.07	
uskrat River uskrat River	IVIdil1_1													
uskrat River	Main_1	971	Winter 100yr	Winter - 113.621m	259.90	110.88	115.08		115.23	0.000663	1.86	203.65	95.03	
		971 971	Winter 100yr Summer 100yr	Winter - 113.621m Summer - 113.621m	259.90 138.10	110.88 110.88	115.08 114.24		115.23 114.33	0.000663	1.86		95.03 75.90	

HEC-RAS Profile River	e: Winter 100yr Reach	Continued) River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
					(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
Muskrat River	Main 1	871	Winter 100yr	Winter - 113.621m	259.90	110.79	114.87		115.13	0.001149	2.38	143.50	61.67	0.38
Muskrat River	Main_1	871	Summer 100yr	Summer - 113.621m	138.10	110.79	114.14		114.27	0.000702	1.62	140.69	55.23	0.29
Muskrat River	Main_1	871	Summer 100yr	Summer - 112 m	138.10	110.79	113.69		113.87	0.001200	1.91	79.42	36.63	0.37
Muskrat River	Main_1	871	Summer 100yr	Summer - 111.082m	138.10	110.79	113.69		113.87	0.001200	1.91	79.42	36.63	0.37
Muskrat River	Main_1	832	Winter 100yr	Winter - 113.621m	259.90	110.24	114.78		115.08	0.001240	2.58	136.21	55.55	0.40
Muskrat River	Main_1	832	Summer 100yr	Summer - 113.621m	138.10	110.24	114.12		114.24	0.000632	1.64	105.19	37.28	0.28
Muskrat River	Main_1	832 832	Summer 100yr	Summer - 112 m	138.10 138.10	110.24	113.65 113.65		113.82 113.82	0.001040	1.91	88.50	35.07 35.07	0.35
Muskrat River	Main_1	032	Summer 100yr	Summer - 111.082m	136.10	110.24	113.05		113.62	0.001040	1.91	88.50	35.07	0.35
Muskrat River	Main_1	812	Winter 100yr	Winter - 113.621m	259.90	110.27	114.57	113.22	115.03	0.002059	3.14	116.76	54.74	0.51
Muskrat River	Main_1	812	Summer 100yr	Summer - 113.621m Summer - 112 m	138.10	110.27	114.04	112.43 112.43	114.22	0.000949	1.93	93.56 74.54	37.99 35.44	0.34
Muskrat River Muskrat River	Main_1 Main_1	812 812	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	138.10 138.10	110.27	113.53	112.43	113.78 113.78	0.001741 0.001741	2.33	74.54	35.44	0.45
	-													
Muskrat River	Main_1	797			Bridge									
Muskrat River	Main_1	785	Winter 100yr	Winter - 113.621m	259.90	110.89	114.18		114.85	0.003873	3.77	82.24	42.03	0.68
Muskrat River	Main_1	785	Summer 100yr	Summer - 113.621m	138.10	110.89	113.92		114.15	0.001503	2.22	72.00	35.05	0.42
Muskrat River	Main_1	785	Summer 100yr	Summer - 112 m	138.10	110.89	113.01		113.58	0.005823	3.39		27.39	0.77
Muskrat River	Main_1	785	Summer 100yr	Summer - 111.082m	138.10	110.89	113.01		113.58	0.005817	3.39	43.74	27.40	0.77
Muskrat River	Main_1	726	Winter 100yr	Winter - 113.621m	259.90	110.76	114.31		114.51	0.000977	2.01	139.90	45.55	0.35
Muskrat River	Main_1	726	Summer 100yr	Summer - 113.621m	138.10	110.76	113.96		114.03	0.000400	1.19	123.95	44.99	0.22
Muskrat River Muskrat River	Main_1 Main_1	726 726	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	138.10 138.10	110.76 110.76	113.08 113.08		113.23 113.23	0.001250 0.001249	1.69	85.47 85.49	43.17 43.17	0.36
	indui_1		Sammar 100yr	2 3111100 - 1111.002111	130.10	110.76	113.00		113.23	0.001249	1.09	00.49	40.17	0.30
Muskrat River	Main_1	581	Winter 100yr	Winter - 113.621m	259.90	110.67	114.11		114.38	0.001403	2.33	121.54	44.01	0.41
Muskrat River Muskrat River	Main_1 Main_1	581 581	Summer 100yr Summer 100yr	Summer - 113.621m Summer - 112 m	138.10 138.10	110.67 110.67	113.89 112.82		113.98 113.04	0.000504	1.33	112.00 68.62	42.63 38.88	0.24
Muskrat River Muskrat River	Main_1 Main_1	581	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	138.10	110.67	112.82		113.04	0.002220	2.09	68.62	38.88	0.48
Muskrat River	Main_1	549 549	Winter 100yr	Winter - 113.621m	259.90	109.85	114.07		114.29	0.000830	1.98		42.08	0.33
Muskrat River Muskrat River	Main_1 Main_1	549 549	Summer 100yr Summer 100yr	Summer - 113.621m Summer - 112 m	138.10 138.10	109.85 109.85	113.88 112.76		113.95 112.92	0.000285 0.001103	1.12	127.29 82.62	41.62 38.44	0.19
Muskrat River	Main_1	549	Summer 100yr	Summer - 111.082m	138.10	109.85	112.77		112.92	0.001102	1.72	82.66	38.45	0.35
Muskrat River	Main 1	470	Winter 100	Winter - 113.621m	259.90	110.11	114.08	112.04	114.21	0.000583	1.60	171.54	51.97	0.27
Muskrat River Muskrat River	Main_1	470	Winter 100yr Summer 100yr	Summer - 113.621m	259.90	110.11	114.08	112.04	114.21	0.000583	0.91	1/1.54	51.97	0.27
Muskrat River	Main_1	470	Summer 100yr	Summer - 112 m	138.10	110.11	112.73	111.52	112.83	0.000847	1.41	102.25	51.15	0.30
Muskrat River	Main_1	470	Summer 100yr	Summer - 111.082m	138.10	110.11	112.73	111.52	112.83	0.000846	1.41	102.31	51.15	0.30
Muskrat River	Main_1	455			Bridge									
	indan_1	100			Dilago									
Muskrat River	Main_1	436	Winter 100yr	Winter - 113.621m	259.90	110.32	113.92	112.29	114.08	0.000838	1.76		71.06	0.32
Muskrat River Muskrat River	Main_1 Main_1	436 436	Summer 100yr	Summer - 113.621m Summer - 112 m	138.10 138.10	110.32 110.32	113.84	111.77	113.88	0.000260	0.96	149.67 84.38	70.90 50.36	0.18
Muskrat River	Main_1	436	Summer 100yr Summer 100yr	Summer - 111.082m	138.10	110.32	112.57	111.77	112.71	0.001623	1.68	84.46	50.36	0.40
	-													
Muskrat River Muskrat River	Main_1 Main_1	381 381	Winter 100yr Summer 100yr	Winter - 113.621m Summer - 113.621m	259.90 138.10	109.69 109.69	113.90 113.83	111.57	114.02 113.86	0.000489	1.59	179.22 175.19	60.52 59.05	0.25
Muskrat River	Main_1	381	Summer 100yr	Summer - 113.62 m Summer - 112 m	138.10	109.69	113.63	110.99	112.62	0.000147	1.32	175.19	46.63	0.14
Muskrat River	Main_1	381	Summer 100yr	Summer - 111.082m	138.10	109.69	112.53	110.99	112.62	0.000583	1.32	110.07	46.64	0.26
		010		NC 1 440.004	050.00	400.00			440.07	0.000005		151.00	51.10	
Muskrat River Muskrat River	Main_1 Main_1	319 319	Winter 100yr Summer 100yr	Winter - 113.621m Summer - 113.621m	259.90 138.10	109.63 109.63	113.82 113.81	111.81	113.97 113.85	0.000685	1.81	154.89 154.39	51.40 51.14	0.30
Muskrat River	Main_1	319	Summer 100yr	Summer - 112 m	138.10	109.63	112.45	111.19		0.000928	1.56	92.62	44.18	0.32
Muskrat River	Main_1	319	Summer 100yr	Summer - 111.082m	138.10	109.63	112.45	111.19	112.57	0.000925	1.56	92.70	44.19	0.32
Muskrat River	Main_1	304			Bridge									
Muskrat River	Main_1	291	Winter 100yr	Winter - 113.621m	259.90	109.77	113.78	111.81	113.95	0.000736	1.91	154.69	80.47	0.31
Muskrat River Muskrat River	Main_1 Main_1	291 291	Summer 100yr Summer 100yr	Summer - 113.621m Summer - 112 m	138.10 138.10	109.77	113.79 112.39	111.13	113.84 112.53	0.000205	1.01	155.47 87.91	81.69 47.02	0.16
Muskrat River	Main_1	291	Summer 100yr	Summer - 111.082m	138.10	109.77	112.39	111.13	112.53	0.001036	1.69	88.01	47.04	0.34
														-
Muskrat River Muskrat River	Main_1 Main 1	266 266	Winter 100yr Summer 100yr	Winter - 113.621m Summer - 113.621m	259.90 138.10	110.68 110.68	113.77 113.79	112.34 111.80	113.92	0.000945	1.80	156.85 158.18	184.86 185.02	0.33
Muskrat River	Main_1	266	Summer 100yr	Summer - 112 m	138.10	110.68	112.25	111.80		0.003376	2.10	68.20	62.34	0.10
Muskrat River	Main_1	266	Summer 100yr	Summer - 111.082m	138.10	110.68	112.25	111.80	112.48	0.003350	2.10	68.37	62.39	0.56
Muskrat River	Main_1	256			Bridge									
Muskrat River	Main_1	242	Winter 100yr	Winter - 113.621m	259.90	110.69	113.59	112.04		0.000697	1.48		118.96	0.28
Muskrat River Muskrat River	Main_1 Main_1	242 242	Summer 100yr Summer 100yr	Summer - 113.621m Summer - 112 m	138.10 138.10	110.69 110.69	113.61 112.06	111.63 111.63	113.64 112.22	0.000192	0.78	177.69	119.14 91.42	0.15
Muskrat River	Main_1	242	Summer 100yr	Summer - 111.082m	138.10	110.69	112.00	111.63		0.003009	1.78	70.01	88.59	0.52
Muskrat River Muskrat River	Main_1 Main_1	213 213	Winter 100yr Summer 100yr	Winter - 113.621m Summer - 113.621m	259.90 138.10	109.78 109.78	113.62 113.62	111.32 110.84	113.66	0.000178	0.90	373.73 373.52	149.02 149.00	0.15
Muskrat River	Main_1	213	Summer 100yr	Summer - 113.62 m Summer - 112 m	138.10	109.78	113.62	110.84	113.63	0.000487	1.03		149.00	0.08
Muskrat River	Main_1	213	Summer 100yr	Summer - 111.082m	138.10	109.78	111.97	110.84		0.000625	1.12		95.84	0.25
Muskrat River	Main_1	146	Winter 100yr	Winter - 113.621m	259.90	110.64	113.62	111.74	113.64	0.000177	0.75	523.88	300.00	0.14
Muskrat River	Main_1 Main_1	146	Summer 100yr	Summer - 113.621m	138.10	110.64	113.62	111.74		0.000050	0.75	523.66	300.00	0.14
Muskrat River	Main_1	146	Summer 100yr	Summer - 112 m	138.10	110.64	112.01	111.40		0.001431	1.20		111.39	0.35
Muskrat River	Main_1	146	Summer 100yr	Summer - 111.082m	138.10	110.64	111.86	111.40	111.96	0.002283	1.38	101.25	107.79	0.44
Muskrat River	Main_1	1	Winter 100yr	Winter - 113.621m	259.90	110.62	113.62	111.27	113.63	0.000031	0.32		300.00	0.06
Muskrat River	Main_1	1	Summer 100yr	Summer - 113.621m	138.10	110.62	113.62	111.13		0.000009	0.17	808.99	300.00	0.03
Muskrat River Muskrat River	Main_1 Main_1	1	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	138.10 138.10	110.62 110.62	112.00 111.13	111.13 111.13	112.01	0.000169	0.41	329.75 84.79	286.77 272.51	0.12
		ľ	Samma Tubyi	2 411100 - 111.002111	130.10	110.02				0.014104	1.00	04.79	212.01	0.91
	Main_1	3247	Winter 100yr	Winter - 113.621m	181.90	116.94	121.18		121.38		2.11	117.57	46.81	0.33
Indian River		3247	Summer 100yr	Summer - 113.621m	92.90	116.94	119.93		120.07		1.65		37.70	0.31
Indian River	Main_1	2247	Summer 100 -	Summer 140 m										
Indian River Indian River	Main_1	3247 3247	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	92.90 92.90	116.94 116.94	119.93 119.93		120.07	0.000852	1.65	64.30 64.30	37.70 37.70	
Indian River Indian River Indian River	Main_1 Main_1	3247	Summer 100yr	Summer - 111.082m	92.90	116.94	119.93		120.07	0.000852	1.65	64.30	37.70	0.31
Indian River Indian River	Main_1									0.000852		64.30 105.94	37.70 39.28	

River	Reach	Continued) River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
Indian Diver	Main 4	2075	Cummer 400 m	Cumman 440 m	(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	0.24
Indian River Indian River	Main_1 Main_1	3075 3075	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	92.90 92.90	116.95 116.95	119.78 119.78		119.92 119.92	0.000893 0.000893	1.63 1.63	<u>61.17</u> 61.17	28.70 28.70	0.31
Indian River Indian River	Main_1 Main 1	2884 2884	Winter 100yr Summer 100yr	Winter - 113.621m Summer - 113.621m	181.90 92.90	115.87 115.87	120.82 119.65		121.06 119.77	0.000812	2.23	103.03	31.75 26.73	0.33
Indian River	Main_1	2884	Summer 100yr	Summer - 112 m	92.90	115.87	119.65		119.77	0.000597	1.57	68.70	26.73	0.27
Indian River	Main_1	2884	Summer 100yr	Summer - 111.082m	92.90	115.87	119.65		119.77	0.000597	1.57	68.70	26.73	0.27
Indian River	Main 1	2861	Winter 100yr	Winter - 113.621m	181.90	116.61	120.68	119.20	121.02	0.001544	2.68	81.92	30.81	0.44
Indian River	Main_1	2861	Summer 100yr	Summer - 113.621m	92.90	116.61	119.55	118.40	119.74	0.001396	2.01	53.37	26.59	0.40
Indian River	Main_1	2861	Summer 100yr	Summer - 112 m	92.90	116.61	119.55	118.40	119.74	0.001396	2.01	53.37	26.59	0.40
Indian River	Main_1	2861	Summer 100yr	Summer - 111.082m	92.90	116.61	119.55	118.40	119.74	0.001396	2.01	53.37	26.59	0.40
Indian River	Main_1	2845			Bridge									
Indian River	Main_1	2832	Winter 100yr	Winter - 113.621m	181.90	116.56	120.52	119.25	120.96	0.002033	3.04	74.18	27.42	0.50
Indian River	Main_1	2832	Summer 100yr	Summer - 113.621m	92.90	116.56	119.45	119.25	119.70	0.002033	2.25	47.15	27.42	0.30
Indian River	Main_1	2832	Summer 100yr	Summer - 112 m	92.90	116.56	119.45	118.36	119.70	0.001732	2.25	47.15	23.03	0.44
Indian River	Main_1	2832	Summer 100yr	Summer - 111.082m	92.90	116.56	119.45	118.36	119.70	0.001732	2.25	47.15	23.03	0.44
Indian River	Main_1	2798	Winter 100yr	Winter - 113.621m	181.90	116.76	120.55		120.81	0.001238	2.35	98.74	41.86	0.39
Indian River	Main_1	2798	Summer 100yr	Summer - 113.621m	92.90	116.76	119.43		119.60	0.001229	1.84	56.30	30.57	0.37
Indian River Indian River	Main_1 Main_1	2798 2798	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	92.90 92.90	116.76 116.76	119.43 119.43		119.60 119.60	0.001229 0.001229	1.84 1.84	56.30 56.30	30.57 30.57	0.37
Indian Triver	Ivical 1_1	2130	ounnie rooyi	Summer - TTT.002m	32.30	110.70	113.45		113.00	0.001223	1.04	50.50	50.57	0.57
Indian River	Main_1	2746	Winter 100yr	Winter - 113.621m	181.90	116.46	120.56		120.73	0.000733	1.90	126.86	56.99	0.30
Indian River	Main_1 Main_1	2746 2746	Summer 100yr Summer 100yr	Summer - 113.621m Summer - 112 m	92.90 92.90	116.46 116.46	119.43 119.43		119.54 119.54	0.000685	1.47	72.16	38.13 38.13	0.28
Indian River	Main_1	2746	Summer 100yr	Summer - 111.082m	92.90	116.46	119.43		119.54	0.000685	1.47	72.10	38.13	0.28
		0040												
Indian River Indian River	Main_1 Main_1	2646 2646	Winter 100yr Summer 100yr	Winter - 113.621m Summer - 113.621m	181.90 92.90	116.37 116.37	120.57 119.42		120.66 119.48	0.000373 0.000312	1.39	163.89	52.47 46.87	0.22
Indian River	Main_1	2646	Summer 100yr	Summer - 112 m	92.90	116.37	119.42		119.48	0.000312	1.02	107.97	46.87	0.19
Indian River	Main_1	2646	Summer 100yr	Summer - 111.082m	92.90	116.37	119.42		119.48	0.000312	1.02	107.97	46.87	0.19
Indian River	Main 1	2613	Winter 100yr	Winter - 113.621m	181.90	116.39	120.55		120.64	0.000419	1.46	175.42	70.04	0.23
Indian River	Main_1	2613	Summer 100yr	Summer - 113.621m	92.90	116.39	119.41		119.46	0.000369	1.10	104.87	53.44	0.21
Indian River	Main_1	2613	Summer 100yr	Summer - 112 m	92.90	116.39	119.41		119.46	0.000369	1.10	104.87	53.44	0.21
Indian River	Main_1	2613	Summer 100yr	Summer - 111.082m	92.90	116.39	119.41		119.46	0.000369	1.10	104.87	53.44	0.21
Indian River	Main_1	2576	Winter 100yr	Winter - 113.621m	181.90	116.41	120.54	118.23	120.62	0.000371	1.37	227.50	116.76	0.22
Indian River Indian River	Main_1 Main_1	2576 2576	Summer 100yr Summer 100yr	Summer - 113.621m Summer - 112 m	92.90 92.90	116.41 116.41	119.39 119.39	117.60	119.45 119.45	0.000382	1.11	109.55	67.32 67.32	0.21
Indian River	Main_1	2576	Summer 100yr	Summer - 111.082m	92.90	116.41	119.39	117.60	119.45	0.000382	1.11	109.55	67.32	0.21
Indian River Indian River	Main_1 Main_1	2492 2492	Winter 100yr Summer 100yr	Winter - 113.621m Summer - 113.621m	181.90 92.90	116.46 116.46	120.48 119.24	118.74	120.58 119.39	0.000612 0.001077	1.72	249.08 64.11	157.47 35.82	0.28
Indian River	Main_1	2492	Summer 100yr	Summer - 112 m	92.90	116.46	119.24	117.96	119.39	0.001077	1.77	64.11	35.82	0.35
Indian River	Main_1	2492	Summer 100yr	Summer - 111.082m	92.90	116.46	119.24	117.96	119.39	0.001077	1.77	64.11	35.82	0.35
Indian River	Main_1	2443	Winter 100yr	Winter - 113.621m	181.90	116.42	120.47	118.55	120.55	0.000475	1.53	269.59	159.08	0.25
Indian River	Main_1	2443	Summer 100yr	Summer - 113.621m	92.90	116.42	119.21	117.80	119.33	0.000842	1.57	70.13	36.56	0.31
Indian River	Main_1	2443	Summer 100yr	Summer - 112 m	92.90	116.42	119.21	117.80	119.33	0.000842	1.57	70.13	36.56	0.31
Indian River	Main_1	2443	Summer 100yr	Summer - 111.082m	92.90	116.42	119.21	117.80	119.33	0.000842	1.57	70.13	36.56	0.31
Indian River	Main_1	2341	Winter 100yr	Winter - 113.621m	181.90	116.43	120.39	118.41	120.50	0.000557	1.64	203.61	108.20	0.27
Indian River	Main_1	2341	Summer 100yr	Summer - 113.621m	92.90 92.90	116.43	119.13	117.72	119.25	0.000805	1.51	68.48	34.28	0.30
Indian River Indian River	Main_1 Main_1	2341 2341	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	92.90	116.43 116.43	119.13 119.13	117.72	119.25 119.25	0.000805	1.51	68.48 68.48	34.28 34.28	0.30
Indian River Indian River	Main_1	2308 2308	Winter 100yr	Winter - 113.621m Summer - 113.621m	181.90 92.90	116.44 116.44	120.33 119.07	118.58	120.48 119.21	0.000772 0.001122	1.89 1.74	168.75 70.10	83.18 71.67	0.31
Indian River	Main_1 Main_1	2308	Summer 100yr Summer 100yr	Summer - 112 m	92.90	116.44	119.07	117.83	119.21	0.001122	1.74	70.10	71.67	0.35
Indian River	Main_1	2308	Summer 100yr	Summer - 111.082m	92.90	116.44	119.07	117.83	119.21	0.001122	1.74	70.10	71.67	0.35
Indian River	Main_1	2283	Winter 100yr	Winter - 113.621m	181.90	115.74	120.31	117.93	120.46	0.000569	1.79	149.29	57.73	0.27
Indian River	Main_1	2283	Summer 100yr	Summer - 113.621m	92.90	115.74	119.09	117.20	119.18	0.000523	1.79	83.29	47.63	0.27
Indian River	Main_1	2283	Summer 100yr	Summer - 112 m	92.90	115.74	119.09	117.20	119.18	0.000523	1.38	83.29	47.63	0.25
Indian River	Main_1	2283	Summer 100yr	Summer - 111.082m	92.90	115.74	119.09	117.20	119.18	0.000523	1.38	83.29	47.63	0.25
Indian River	Main_1	2187	Winter 100yr	Winter - 113.621m	181.90	115.64	120.25	117.97	120.40	0.000636	1.90	164.05	76.23	0.29
Indian River	Main_1	2187	Summer 100yr	Summer - 113.621m	92.90	115.64	119.00	117.22	119.12	0.000650	1.55	77.12	57.84	0.28
Indian River Indian River	Main_1 Main_1	2187 2187	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	92.90 92.90	115.64 115.64	119.00 119.00	117.22	119.12 119.12	0.000650	1.55 1.55	77.12	57.84 57.84	0.28
Indian River	Main_1	2108 2108	Winter 100yr Summer 100yr	Winter - 113.621m Summer - 113.621m	181.90	115.66	120.20	117.95	120.35 119.07	0.000629	1.89	163.50	68.85	0.29
Indian River Indian River	Main_1 Main_1	2108	Summer 100yr Summer 100yr	Summer - 113.621m Summer - 112 m	92.90 92.90	115.66 115.66	118.96 118.96	117.16	119.07	0.000628	1.52 1.52	84.76 84.76	55.69 55.69	0.27
Indian River	Main_1	2108	Summer 100yr	Summer - 111.082m	92.90	115.66	118.96	117.16	119.07	0.000628	1.52	84.76	55.69	0.27
Indian Div	Main 4	2069	Winter 400	Winter 449-004	401.0-		400.0-		400.0-	0.00000-		400 7-		
Indian River Indian River	Main_1 Main_1	2068 2068	Winter 100yr Summer 100yr	Winter - 113.621m Summer - 113.621m	181.90 92.90	115.70 115.70	120.20 118.94	117.89	120.32	0.000526	1.72	168.75 84.14	73.59 60.70	0.26
Indian River	Main_1	2068	Summer 100yr	Summer - 112 m	92.90	115.70	118.94	117.14	119.04	0.000586	1.45	84.14	60.70	0.26
Indian River	Main_1	2068	Summer 100yr	Summer - 111.082m	92.90	115.70	118.94	117.14	119.04	0.000586	1.45	84.14	60.70	0.26
Indian River	Main_1	2040	Winter 100yr	Winter - 113.621m	181.90	115.65	120.15	117.78	120.30	0.000589	1.81	144.03	64.49	0.28
Indian River	Main_1	2040	Summer 100yr	Summer - 113.621m	92.90	115.65	118.93	117.05	119.02	0.000542	1.39	80.49	43.43	0.25
Indian River	Main_1	2040	Summer 100yr	Summer - 112 m	92.90	115.65	118.93	117.05	119.02	0.000542	1.39	80.49	43.43	0.25
Indian River	Main_1	2040	Summer 100yr	Summer - 111.082m	92.90	115.65	118.93	117.05	119.02	0.000542	1.39	80.49	43.43	0.25
Indian River	Main_1	1966	Winter 100yr	Winter - 113.621m	181.90	115.66	120.03	118.15	120.24	0.000892	2.18	122.58	50.42	0.34
Indian River	Main_1	1966	Summer 100yr	Summer - 113.621m	92.90	115.66	118.84	117.28	118.97	0.000830	1.68	70.41	33.09	0.31
Indian River Indian River	Main_1 Main_1	1966 1966	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	92.90 92.90	115.66 115.66	118.84 118.84	117.28	118.97 118.97	0.000830	1.68 1.68	70.41	33.09 33.09	0.31
													00.00	
Indian River	Main_1	1921	Winter 100yr	Winter - 113.621m	181.90	115.65	120.09	117.80	120.18	0.000389	1.47	183.61	80.76	0.22
Indian River Indian River	Main_1 Main_1	1921 1921	Summer 100yr Summer 100yr	Summer - 113.621m Summer - 112 m	92.90 92.90	115.65 115.65	118.83 118.83	117.05	118.93 118.93	0.000571	1.41	85.43	64.84 64.84	0.26
Indian River	Main_1	1921	Summer 100yr	Summer - 112 m Summer - 111.082m	92.90	115.65	118.83	117.05	118.93	0.000571	1.41	85.43	64.84	0.26
		1888	Winter 100yr											
Indian River	Main_1			Winter - 113.621m	181.90	115.59	120.03	117.69	120.16	0.000530	1.70	150.29	65.12	0.26

HEC-RAS Profil River	le: Winter 100yr Reach	(Continued) River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
Indian River	Main 1	1888	Summer 100yr	Summer - 113.621m	(m3/s) 92.90	(m)	(m)	(m)	(m) 118.91	(m/m)	(m/s) 1.31	(m2)	(m) 44.02	0.04
Indian River	Main_1	1888	Summer 100yr	Summer - 113.62 m	92.90	115.59 115.59	118.82 118.82	<u>116.99</u> 116.99	118.91	0.000490	1.31	88.05 88.05	44.02	0.24
Indian River	Main_1	1888	Summer 100yr	Summer - 111.082m	92.90	115.59	118.82	116.99	118.91	0.000490	1.31	88.05	44.02	0.24
Indian River	Main_1	1868	Winter 100yr	Winter - 113.621m	181.90	114.90	119.87	117.52	120.13	0.000856	2.32	85.64	25.39	0.34
Indian River	Main_1	1868	Summer 100yr	Summer - 113.621m	92.90	114.90	118.77	116.68	118.89	0.000547	1.56	64.78	23.73	0.26
Indian River	Main_1	1868	Summer 100yr	Summer - 112 m	92.90	114.90	118.77	116.68	118.89	0.000547	1.56	64.78	23.73	0.26
Indian River	Main_1	1868	Summer 100yr	Summer - 111.082m	92.90	114.90	118.77	116.68	118.89	0.000547	1.56	64.78	23.73	0.26
Indian River	Main_1	1859			Bridge									
Indian River	Main_1	1849	Winter 100yr	Winter - 113.621m	181.90	115.16	119.77	117.70	120.05	0.001013	2.39	81.18	26.41	0.37
Indian River	Main_1	1849	Summer 100yr	Summer - 113.621m	92.90	115.16	118.73	116.89	118.86	0.000670	2.39	60.98	23.96	0.37
Indian River	Main_1	1849	Summer 100yr	Summer - 112 m	92.90	115.16	118.73	116.89	118.86	0.000670	1.62	60.98	23.96	0.29
Indian River	Main_1	1849	Summer 100yr	Summer - 111.082m	92.90	115.16	118.73	116.89	118.86	0.000670	1.62	60.98	23.96	0.29
Indian River	Main_1	1829	Winter 100yr	Winter - 113.621m	181.90	114.48	119.85	117.08	119.94	0.000377	1.47	188.25	73.89	0.22
Indian River	Main_1	1829	Summer 100yr	Summer - 113.621m	92.90	114.48	118.75	116.38	118.81	0.000305	1.11	114.01	61.82	0.19
Indian River Indian River	Main_1 Main_1	1829 1829	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	92.90 92.90	114.48 114.48	118.75 118.75	116.38	118.81 118.81	0.000305	1.11	114.01	61.82 61.82	0.19
Indian River Indian River	Main_1 Main_1	1799	Winter 100yr Summer 100yr	Winter - 113.621m Summer - 113.621m	181.90 92.90	114.29 114.29	119.79 118.72		119.93 118.80	0.000464	1.82	168.88 96.80	90.14 54.32	0.26
Indian River	Main_1	1799	Summer 100yr	Summer - 112 m	92.90	114.29	118.72		118.80	0.000337	1.32	96.80	54.32	0.21
Indian River	Main_1	1799	Summer 100yr	Summer - 111.082m	92.90	114.29	118.72		118.80	0.000337	1.32	96.80	54.32	0.21
Indian River	Main 1	1748	Winter 100yr	Winter - 113.621m	181.90	114.63	119.84		119.88	0.000165	1.04	206.75	110.42	0.15
Indian River	Main_1	1748	Summer 100yr	Summer - 113.621m	92.90	114.63	119.64		119.66	0.000165	1.04	103.75	64.09	0.15
Indian River	Main_1	1748	Summer 100yr	Summer - 112 m	92.90	114.63	118.72		118.78	0.000243	1.06	103.75	64.09	0.18
Indian River	Main_1	1748	Summer 100yr	Summer - 111.082m	92.90	114.63	118.72		118.78	0.000243	1.06	103.75	64.09	0.18
Indian River	Main_1	1608	Winter 100yr	Winter - 113.621m	181.90	114.02	119.78	117.21	119.85	0.000333	1.48	205.20	116.40	0.21
Indian River	Main_1	1608	Summer 100yr	Summer - 113.621m	92.90	114.02	118.61	116.34	118.72	0.000488	1.50	79.79	84.34	0.25
Indian River Indian River	Main_1 Main_1	1608 1608	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	92.90 92.90	114.02 114.02	118.61 118.61	116.34	118.72 118.72	0.000488	1.50	79.79	84.34 84.34	0.25
					32.30	114.02	110.01	110.34	110.72	0.000400	1.30	13.19		0.20
Indian River	Main_1	1516	Winter 100yr	Winter - 113.621m	181.90	115.21	119.76	117.43	119.82	0.000311	1.33	206.18	104.46	0.20
Indian River Indian River	Main_1 Main_1	1516	Summer 100yr Summer 100yr	Summer - 113.621m Summer - 112 m	92.90 92.90	115.21 115.21	118.58 118.58	116.65	118.67 118.67	0.000497 0.000497	1.37	87.41 87.41	90.83 90.83	0.24
Indian River	Main_1	1516	Summer 100yr	Summer - 111.082m	92.90	115.21	118.58	116.65	118.67	0.000497	1.37	87.41	90.83	0.24
Indian River	Main_1	1429	Winter 100yr	Winter - 113.621m	181.90	115.22	119.73	117.33	119.79	0.000291	1.29	270.79	143.39	0.20
Indian River	Main_1	1429	Summer 100yr	Summer - 113.621m	92.90	115.22	118.54	117.33	118.63	0.000231	1.29	83.23	47.64	0.20
Indian River	Main_1	1429	Summer 100yr	Summer - 112 m	92.90	115.22	118.54	116.60	118.63	0.000476	1.34	83.23	47.64	0.24
Indian River	Main_1	1429	Summer 100yr	Summer - 111.082m	92.90	115.22	118.54	116.60	118.63	0.000476	1.34	83.23	47.64	0.24
Indian River	Main_1	1313	Winter 100yr	Winter - 113.621m	181.90	114.10	119.72	116.77	119.75	0.000241	1.00	283.14	134.47	0.14
Indian River	Main_1	1313	Summer 100yr	Summer - 113.621m	92.90	114.10	118.51	115.91	118.57	0.000439	1.14	120.48	112.70	0.18
Indian River Indian River	Main_1 Main_1	1313 1313	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	92.90 92.90	114.10 114.10	118.51 118.51	115.91	118.57 118.57	0.000439	1.14	120.48 120.48	112.70 112.70	0.18
Indian Trivo	TVIGHT_1	1010	ounnia rooyi	Gummar - TTT.002m	32.30	114.10	110.01	110.01	110.07	0.000403	1.14	120.40	112.70	0.10
Indian River	Main_1	1308			Bridge									
Indian River	Main_1	1301	Winter 100yr	Winter - 113.621m	181.90	114.66	119.70	117.46	119.74	0.000161	0.92	284.36	140.99	0.13
Indian River	Main_1	1301	Summer 100yr	Summer - 113.621m	92.90	114.66	118.49	116.58	118.55	0.000395	1.19	115.21	116.61	0.20
Indian River	Main_1	1301	Summer 100yr	Summer - 112 m	92.90	114.66	118.49	116.58	118.55	0.000395	1.19	115.22	116.61	0.20
Indian River	Main_1	1301	Summer 100yr	Summer - 111.082m	92.90	114.66	118.49	116.58	118.55	0.000395	1.19	115.22	116.61	0.20
Indian River	Main_1	1220	Winter 100yr	Winter - 113.621m	181.90	115.04	119.63	117.08	119.70	0.000333	1.37	232.04	121.01	0.21
Indian River Indian River	Main_1	1220	Summer 100yr	Summer - 113.621m	92.90 92.90	115.04	118.44 118.44	116.43	118.51 118.51	0.000370	1.17	101.16 101.16	59.79 59.79	0.21
Indian River	Main_1 Main_1	1220	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	92.90	115.04 115.04	118.44	116.43	118.51	0.000370	1.17	101.16	59.79	0.21
Indian River Indian River	Main_1 Main_1	1125 1125	Winter 100yr	Winter - 113.621m Summer - 113.621m	181.90 92.90	115.08 115.08	119.59 118.40	117.23	119.67 118.47	0.000381	1.47	208.71	92.02 79.16	0.22
Indian River	Main_1 Main_1	1125	Summer 100yr Summer 100yr	Summer - 113.621m Summer - 112 m	92.90	115.08	118.40	116.51	118.47	0.000439	1.27	106.15	79.16	0.23
Indian River	Main_1	1125	Summer 100yr	Summer - 111.082m	92.90	115.08	118.40	116.51	118.47	0.000439	1.27	106.15	79.16	0.23
Indian River	Main_1	974	Winter 100yr	Winter - 113.621m	181.90	115.02	119.49	117.04	119.61	0.000472	1.62	144.15	50.96	0.25
Indian River	Main_1	974	Summer 100yr	Summer - 113.621m	92.90	115.02	118.34	117.04	119.01	0.000472	1.02	89.54	43.42	0.22
Indian River	Main_1	974	Summer 100yr Summer 100yr	Summer - 112 m	92.90	115.02	118.34	116.36	118.41	0.000401	1.22	89.54	43.42	0.22
Indian River	Main_1	974	Summer 100yr	Summer - 111.082m	92.90	115.02	118.34	116.36	118.41	0.000401	1.22	89.54	43.42	0.22
Indian River	Main_1	888	Winter 100yr	Winter - 113.621m	181.90	113.98	119.39		119.56	0.000566	1.87	126.07	40.10	0.27
Indian River Indian River	Main_1 Main_1	888 888	Summer 100yr Summer 100yr	Summer - 113.621m Summer - 112 m	92.90 92.90	113.98 113.98	118.29 118.29		118.38 118.38	0.000375	1.28	84.63 84.63	35.15 35.15	0.21
Indian River	Main_1	888	Summer 100yr	Summer - 112 m Summer - 111.082m	92.90	113.98	118.29		118.38	0.000375	1.20		35.15	0.21
Indian River Indian River	Main_1 Main_1	829 829	Winter 100yr Summer 100yr	Winter - 113.621m Summer - 113.621m	181.90 92.90	115.08 115.08	119.33 118.24	117.19 116.47	119.52 118.35	0.000750	1.98 1.44	118.70 73.65	43.77 37.69	0.31
Indian River	Main_1	829	Summer 100yr	Summer - 112 m	92.90	115.08	118.24	116.47	118.35	0.000593	1.44	73.65	37.69	0.26
Indian River	Main_1	829	Summer 100yr	Summer - 111.082m	92.90	115.08	118.24	116.47	118.35	0.000593	1.44	73.65	37.69	0.26
Indian River	Main 1	671	Winter 100yr	Winter - 113.621m	181.90	115.01	119.24	117.10	119.40	0.000674	1.86	142.24	60.54	0.29
Indian River	Main_1	671	Summer 100yr	Summer - 113.621m	92.90	115.01	118.16	116.40	118.25	0.000565	1.39	83.11	50.05	0.26
Indian River	Main_1	671	Summer 100yr	Summer - 112 m	92.90	115.01	118.16	116.40	118.25	0.000565	1.39	83.11	50.05	0.26
Indian River	Main_1	671	Summer 100yr	Summer - 111.082m	92.90	115.01	118.16	116.40	118.25	0.000565	1.39	83.11	50.05	0.26
Indian River	Main_1	532	Winter 100yr	Winter - 113.621m	181.90	115.05	119.09		119.29	0.000837	2.02	111.40	41.36	0.32
Indian River Indian River	Main_1 Main_1	532 532	Summer 100yr	Summer - 113.621m Summer - 112 m	92.90 92.90	115.05 115.05	118.07 118.07		118.17 118.17	0.000634	1.44	72.91 72.91	34.50 34.50	0.27
Indian River Indian River	Main_1 Main_1	532	Summer 100yr Summer 100yr	Summer - 112 m Summer - 111.082m	92.90	115.05	118.07		118.17 118.17	0.000634	1.44	72.91	34.50 34.50	0.27
Indian River	Main_1	368	Winter 100yr Summer 100yr	Winter - 113.621m	181.90 92.90	115.08	118.94	117.07	119.15	0.000917	2.06	106.24	38.55	0.34
Indian River Indian River	Main_1 Main_1	368 368	Summer 100yr Summer 100yr	Summer - 113.621m Summer - 112 m	92.90	115.08 115.08	117.95 117.95	116.38	118.06 118.06	0.000700	1.47	70.05	34.33 34.33	0.28
Indian River	Main_1	368	Summer 100yr	Summer - 111.082m	92.90	115.08	117.95	116.38	118.06	0.000700	1.47	70.05	34.33	0.28
		274	Winter 100-	Winter 110 CO4-	181.90	115.08	440.00		440.05	0.004400	0.00	119.14	67.96	0.38
Indian D'			Winter 100yr	Winter - 113.621m	ı 181.90 l	115.08	118.82		119.05	0.001139	2.23	11914		0.38
Indian River Indian River	Main_1 Main_1	274	Summer 100yr	Summer - 113.621m	92.90	115.08	117.84		117.98	0.000978	1.67	65.55	42.79	0.33

River	Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
					(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
Indian River	Main_1	274	Summer 100yr	Summer - 111.082m	92.90	115.08	117.84		117.98	0.000978	1.67	65.55	42.79	0.33
Indian River	Main_1	217	Winter 100yr	Winter - 113.621m	181.90	115.07	118.79		118.98	0.000949	2.04	142.15	75.64	0.34
Indian River	Main_1	217	Summer 100yr	Summer - 113.621m	92.90	115.07	117.79		117.92	0.000909	1.61	70.53	54.75	0.32
Indian River	Main_1	217	Summer 100yr	Summer - 112 m	92.90	115.07	117.79		117.92	0.000909	1.61	70.54	54.75	0.32
Indian River	Main_1	217	Summer 100yr	Summer - 111.082m	92.90	115.07	117.79		117.92	0.000909	1.61	70.54	54.75	0.32
Indian River	Main_1	157	Winter 100yr	Winter - 113.621m	181.90	115.06	118.74		118.92	0.001002	2.07	150.64	84.77	0.35
Indian River	Main_1	157	Summer 100yr	Summer - 113.621m	92.90	115.06	117.71		117.86	0.001097	1.73	69.24	71.18	0.35
Indian River	Main_1	157	Summer 100yr	Summer - 112 m	92.90	115.06	117.71		117.86	0.001097	1.73		71.18	0.35
Indian River	Main_1	157	Summer 100yr	Summer - 111.082m	92.90	115.06	117.71		117.86	0.001097	1.73	69.24	71.18	0.35
Indian River	Main 1	64	Winter 100yr	Winter - 113.621m	181.90	115.05	118.61		118.82	0.001136	2.17	122.92	58.65	0.37
Indian River	Main 1	64	Summer 100yr	Summer - 113.621m	92.90	115.05	117.61		117.76	0.001108	1.71	66.39	53.34	0.35
Indian River	Main 1	64	Summer 100yr	Summer - 112 m	92.90	115.05	117.61		117.76	0.001108	1.71	66.39	53.34	0.35
Indian River	Main_1	64	Summer 100yr	Summer - 111.082m	92.90	115.05	117.61		117.76	0.001108	1.71	66.39	53.34	0.35
Indian River	Main_1	2	Winter 100yr	Winter - 113.621m	181.90	114.32	118.42		118.73	0.001447	2.61	94.41	38.44	0.43
Indian River	Main_1	2	Summer 100yr	Summer - 113.621m	92.90	114.32	117.53		117.69	0.001012	1.82	61.65	34.57	0.34
Indian River	Main_1	2	Summer 100yr	Summer - 112 m	92.90	114.32	117.53		117.69	0.001012	1.82	61.65	34.58	0.34
Indian River	Main_1	2	Summer 100yr	Summer - 111.082m	92.90	114.32	117.53		117.69	0.001012	1.82	61.65	34.58	0.34

APPENDIX F

PCSWMM Model Parameters and Design Storm Parameters

Name	Area	Width	ubcatchment Ir Flow Length	Slope (%)	Imperv.	Max. Infil.	Min. Infil.
Name	(ha)	(m)	(m)	Siche (10)	(%)	Rate	Rate
	()	(,	(,		(,,,,	(mm/hr)	(mm/hr)
A_001	0.8099	90	89.989	4.403	69.212	127	120
 A_002	0.3734	40	93.35	4.699	75.815	127	120
 A_003	0.1224	40	30.6	6.028	75.143	127	120
 A_004	0.4767	70	68.1	7.661	68.476	127	119.75
A_005	0.2591	35	74.029	4.945	68.768	125	97.31
A_006	0.2803	40	70.075	3.975	69.114	122	72.52
A_007	0.1821	30	60.7	4.383	71.451	120	55.55
A_008	3.5933	140	256.664	5.094	43.536	126	117.07
A_011	0.9121	60	152.017	4.617	73.92	124	90.77
A_012	0.0558	8	69.75	6.209	71.11	120	55
A_013	0.5451	40	136.275	4.478	74.644	120	55
A_014	0.3111	30	103.7	4.728	73.441	120	55
A_015	0.9438	70	134.829	5.576	71.409	131	37.38
A_016	0.3602	50	72.04	6.657	73.115	150	7.5
A_017	0.0096	5	19.2	3.292	80.444	150	7.5
A_018	0.3674	40	91.85	5.772	67.51	130	36.87
A_019	0.0092	5	18.4	2.543	85.169	120	55
A_020	0.6947	70	99.243	3.895	3.73	127	120
A_021	0.0104	5	20.8	4.658	80.863	127	120
A_022	0.3707	80	46.337	3.38	30.555	127	120
A_023	0.0214	8	26.75	2.109	81.682	127	120
A_024	0.4184	60	69.733	4.203	76.082	127	120
A_025	0.0294	8	36.75	3.804	80.128	127	120
A_026	0.1536	20	76.8	5.545	73.442	127	120
A_027	0.5417	60	90.283	4.888	70.767	127	116.43
A_028	0.2942	30	98.067	5.711	72.944	121	63.79
A_029	0.2398	30	79.933	5.397	70.922	120	55.05
A_030	0.0109	5	21.8	3.797	78.312	120	55
A_031	0.0094	7	13.429	1.749	90.143	120	55
A_032	0.7203	55	130.964	5.481	73.187	121	65.53
A_033	0.2086	20	104.3	6.06	68.788	126	105.54
A_034	0.5554	80	69.425	5.219	67.628	127	120
A_035	0.3082	25	123.28	3.883	70.744	127	119.16
A_036	0.1371	20	68.55	3.791	73.415	121	66.98
A_037	0.7359	60	122.65	4.037	70.892	120	55.36

Table F.1: Subcatchment Information of Amalgamated Model

Name	Area	Width	Flow Length	Slope (%)	Imperv.	Max. Infil.	Min. Infil.
	(ha)	(m)	(m)		(%)	Rate	Rate
A 020	0.0024	00	424.475	4 4 0 7	50.024	(mm/hr)	(mm/hr)
A_038	0.9934	80	124.175	4.197	58.824	120	56.94
A_039	1.8753	90	208.367	5.512	71.019	124	89.06
A_040	0.0095	8	11.875	3.19	90.493	120	55
A_041	0.3145	40	78.625	4.665	72.334	120	55
A_042	1.7183	200	85.915	5.906	71.863	120	55
A_043	1.7626	60	293.767	4.705	32.745	123	82.14
A_044	0.6551	70	93.586	7.412	69.827	120	55
A_045	1.1887	60	198.117	6.594	54.18	122	69.84
A_046	0.948	60	158	7.099	71.708	124	89.92
A_047	0.2275	20	113.75	5.105	70.499	120	55.37
A_048	0.905	60	150.833	7.504	64.08	124	91.95
A_049	0.5998	40	149.95	7.248	62.367	125	104.33
A_050	0.1462	20	73.1	9.155	68.39	123	84.71
A_051	0.0076	8	9.5	5.509	80.457	120	61.28
A_052	1.2377	50	247.54	5.573	70.344	125	101.47
A_053	0.4944	50	98.88	3.533	81.432	120	55
A_054	0.424	50	84.8	3.839	79.7	120	55
A_055	1.7536	180	97.422	6.867	68.24	127	116.88
A_056	0.0287	8	35.875	4.303	75.821	120	55
A_057	0.3099	30	103.3	5.061	79.742	121	59.56
A_058	0.3662	30	122.067	3.983	79.983	122	73.73
A_059	0.2457	25	98.28	5.664	81.545	123	81
A_060	0.4817	50	96.34	5.242	78.038	127	119.84
A_061	0.3775	50	75.5	6.283	71.825	127	120
A_062	0.4576	50	91.52	6.405	72.01	127	120
A_063	0.4936	60	82.267	7.711	73.593	126	114.87
A_064	0.3522	40	88.05	8.392	78.199	120	55
A_065	2.1559	90	239.544	7	63.168	120	55
A_066	0.053	10	53	7.854	69.543	120	55
A_067	0.8771	110	79.736	7.565	81.719	127	114.84
A_068	0.5429	70	77.557	6.714	80.249	127	120
A_069	0.2622	35	74.914	5.906	81.082	127	120
A 070	0.1052	20	52.6	6.718	82.025	127	120
 A_071	1.9256	90	213.956	8.203	72.076	126	107.26
 A_072	1.5051	80	188.138	9.349	72.259	129	53.93
 A_073	0.3587	40	89.675	5.344	79.558	136	29.43
 A_074	0.0458	10	45.8	4.054	79.376	123	48.51
 A 075	0.4291	90	47.678	5.993	73.339	145	13.76
A_076	0.27	60	45	3.991	74.633	150	7.5
A_077	3.8693	120	322.442	4.068	66.339	145	5.75
A_078	0.0502	10	50.2	3.243	73.728	150	7.5
A_079	0.0201	5	40.2	2.198	81.7	150	7.5

City-Wide Flood Risk Assessment and Storm Outlet Review City of Pembroke

Name	Area (ha)	Width (m)	Flow Length (m)	Slope (%)	Imperv. (%)	Max. Infil. Rate	Min. Infil. Rate
	(iid)	(11)	(11)		(/0)	(mm/hr)	(mm/hr)
A_080	0.0354	8	44.25	2.397	83.114	150	7.5
A_081	0.243	40	60.75	5.863	80.68	150	7.5
 A_082	1.2666	100	126.66	5.88	41.924	150	7.5
 A_083	0.2407	30	80.233	3.957	66.155	150	7.5
 A_084	0.0264	7	37.714	4.371	72.68	150	7.5
 A_085	3.4079	120	283.992	4.884	40.907	150	7.5
 A_086	0.2642	30	88.067	6.851	64.904	150	7.5
 A_087	1.3673	80	170.912	6.012	52.643	150	7.5
 A_088	0.0655	20	32.75	5.778	78.803	150	7.5
 A_089	0.6369	60	106.15	5.059	71.936	150	7.5
 A_090	0.4573	70	65.329	5.735	68.372	146	10.91
 A_091	0.6787	60	113.117	6	72.995	133	33.68
A_092	1.743	110	158.455	5.396	74.26	149	6.28
A_093	0.4918	60	81.967	4.721	70.367	150	7.5
A_094	0.9006	100	90.06	7.991	69.161	140	21.95
A_095	0.2148	40	53.7	6.587	70.867	150	7.5
A_096	0.4094	40	102.35	7.33	70.967	150	7.5
A_097	0.4322	50	86.44	6.776	70.098	150	7.5
A_098	0.266	50	53.2	5.008	73.217	150	7.5
A_099	0.8825	100	88.25	6.898	48.131	150	7.5
A_100	0.5359	60	89.317	4.4	67.686	150	7.5
A_101	0.0978	15	65.2	3.893	64.33	150	7.5
A_102	0.3095	30	103.167	6.853	67.846	150	7.5
A_103	0.059	15	39.333	3.738	67.739	150	7.5
A_104	0.2502	40	62.55	3.58	70.182	150	7.5
A_105	0.5688	120	47.4	3.946	74.698	150	7.5
A_106	0.2588	30	86.267	3.779	78.85	150	7.5
A_107	1.438	120	119.833	3.377	74.473	150	7.5
A_108	1.5897	120	132.475	3.784	70.396	150	7.5
A_109	0.9205	65	141.615	4.48	70.156	150	7.5
A_110	0.2907	25	116.28	9.168	81.104	150	7.5
A_111	0.2985	30	99.5	6.17	76.428	150	7.5
A_112	0.081	8	101.25	5.783	78.705	150	7.5
A_113	0.0128	7	18.286	2.161	85.332	150	7.5
A_114	0.0469	12	39.083	3.95	78.308	150	7.5
A_115	0.2115	40	52.875	8.609	77.733	150	7.5
A_116	0.0838	20	41.9	9.192	72.323	150	7.5
A_117	0.0445	20	22.25	15	59.973	150	7.5
A_118	0.2517	60	41.95	13.286	60.519	150	7.5
A_119	0.183	45	40.667	11.637	59.984	150	7.5

City-Wide Flood Risk Assessment and Storm Outlet Review City of Pembroke

City-Wide Flood Risk Assessment and Storm Outlet Review *City of Pembroke*

	Table F.2: Subcatchment Information for the Darcy Model									
Name	Area (ha)	Width (m)	Flow Length (m)	Slope (%)	Imperv. (%)	Max. Infil. Rate (mm/hr)	Min. Infil. Rate (mm/hr)			
D_01	0.7208	90	80.089	5	69.809	150	5			
D_02	0.0015	2	7.5	3.536	94.287	150	5			
D_03	0.5365	60	89.417	5	69.971	150	5			
D_04	0.9031	70	129.014	5	68.181	123	3.76			
D_05	0.0041	5	8.2	4.018	86.194	150	5			
D_06	0.004	4	10	1.709	92.95	150	5			
D_07	0.3142	50	62.84	5	65.967	135	4.31			
D_08	0.293	50	58.6	4.056	73.434	77	1.7			
D_09	0.0094	4	23.5	5.331	75.804	50	0.51			
D_10	0.1013	30	33.767	5.015	63.86	50	0.51			

Table F.3: Subcatchment Information for the Lake Street Area Model

Name	Area	Width	Flow Length	Slope	Imperv.	Max. Infil.	Min. Infil.
	(ha)	(m)	(m)	(%)	(%)	Rate	Rate
						(mm/hr)	(mm/hr)
L_01	1.9858	120	165.483	3.353	71.044	50	0.51
L_02	0.3315	30	110.5	3.614	72.398	50	0.51
L_03	0.00005	0.5	0.98	2.771	81.686	50	0.51
L_04	0.1958	20	97.9	3.322	66.219	50	0.51
L_05	0.0845	10	84.5	3.411	68.503	50	0.51
L_06	0.0205	5	41	2.54	81.397	50	0.51
L_07	0.3804	50	76.08	5.417	73.082	50	0.51
L_08	0.3577	40	89.425	4.357	74.302	50	0.51
L_09	0.4464	50	89.28	2.652	73.715	50	0.51
L_10	0.0005	2	2.5	1.534	93.074	50	0.51
L_11	0.0675	15	45	5.083	62.233	50	0.51
L_12	0.0858	30	28.6	3.118	75.306	50	0.51
L_13	0.0697	15	46.467	3.563	68.19	50	0.51
L_14	0.0317	8	39.625	4.519	68.237	50	0.51
L_15	0.0621	18	34.5	4.835	69.855	50	0.51
L_16	0.0217	8	27.125	2.59	76.431	50	0.51
L_17	0.6703	80	83.788	3.162	78.271	50	0.51
L_18	0.0108	7	15.429	1.475	94.774	50	0.51
L_19	0.2848	60	47.467	3.065	76.243	50	0.51
L_20	0.598	50	119.6	3.434	81.283	50	0.51
L_21	0.3804	50	76.08	4.193	88.33	50	0.51
L_22	0.0076	5	15.2	2.033	92.295	50	0.51
L_23	2.3039	90	255.989	8	69.861	50	0.51
L_24	4.2446	150	282.973	3.685	42.354	50	0.51
L_25	0.2984	40	74.6	2.961	78.897	50	0.51
L_26	0.4818	40	120.45	3.907	77.793	50	0.51

Name	Area (ha)	Width (m)	Flow Length (m)	Slope (%)	Imperv. (%)	Max. Infil. Rate (mm/hr)	Min. Infil. Rate (mm/hr)
L_27	0.1233	30	41.1	3.982	80.087	50	0.51
L_28	0.1687	25	67.48	5.4	70.649	50	0.51
L_29	0.2879	40	71.975	8	69.646	50	0.51
L_30	0.2474	40	61.85	5.074	66.003	50	0.51
L_31	0.5998	60	99.967	2.006	59.992	50	0.51
L_32	0.2566	40	64.15	5.442	67.983	50	0.51
L_33	0.5735	50	114.7	5.593	77.479	50	0.51
L_34	0.465	60	77.5	5.722	81.67	50	0.51
L_35	0.3176	35	90.743	6	76.016	50	0.51

City-Wide Flood Risk Assessment and Storm Outlet Review City of Pembroke

Table F.4: Subcatchment Information for the Trafalgar Model

Name	Area (ha)	Width (m)	Flow Length (m)	Slope (%)	Imperv. (%)	Max. Infil. Rate	Min. Infil. Rate
						(mm/hr)	(mm/hr)
T_01	1.5233	120	126.942	4.929	70.986	150	5
T_02	0.2192	40	54.8	4.949	74.549	150	5
T_03	0.0166	8	20.75	5.654	80.33	150	5
T_04	0.5603	80	70.038	7.19	70.503	150	5
T_05	0.0231	8	28.875	4.38	80.476	150	5
T_06	0.8884	60	148.067	4.952	69.818	96	2.57
T_07	0.9211	60	153.517	5.971	69.896	95	2.56
T_08	0.0104	4	26	3.83	79.372	50	0.51
T_09	0.0189	8	23.625	2.928	90.193	50	0.51
T_10	1.2501	70	178.586	7.107	68.44	143	16.01
T_11	0.0173	5	34.6	6	80.624	150	5
T_12	0.4351	70	62.157	5.452	72.603	113	3.34
T_13	0.691	70	98.714	4.347	69.079	55	0.73
T_14	1.22	80	152.5	3.873	71.681	150	5
T_15	0.4719	45	104.867	6.204	69.244	150	5
T_16	0.5204	60	86.733	7.135	70.686	150	5
T_17	0.562	60	93.667	8.289	70.257	148	4.91
T_18	0.6727	60	112.117	3.402	69.146	50	0.51
T_19	1.0056	100	100.56	3.311	72.022	50	0.51
T_20	0.9058	90	100.644	4.289	67.116	50	0.51
T_21	0.0678	30	22.6	4.263	82.624	50	0.51
T_22	0.244	35	69.714	4.293	68.691	50	0.51
T_23	0.0348	10	34.8	6.588	69.308	50	0.51
T_24	0.4243	60	70.717	4.009	70.641	50	0.51
T_25	0.2928	35	83.657	3.304	69.181	50	0.51
T_26	0.2236	25	89.44	2.202	71.862	50	0.51
T_27	0.3748	50	74.96	2.984	72.165	50	0.51
T_28	0.2026	20	101.3	6.741	75.032	50	0.51

Name	Area	Width	Flow Length	Slope	Imperv.	Max. Infil.	Min. Infil.
	(ha)	(m)	(m)	(%)	(%)	Rate	Rate
T 29	0.1821	15	121.4	3.517	75.426	(mm/hr) 50	(mm/hr) 0.51
	0.1821					50	
T_30		45	65.178	4.149	75.421		0.51
T_31	0.046	7	65.714	5.136	75.235	50	0.51
T_32	0.3931	50	78.62	5.001	73.346	50	0.51
T_33	0.1996	40	49.9	4.698	75.551	50	0.51
T_34	0.3327	20	166.35	5.6	74.845	50	0.51
T_35	0.5374	40	134.35	5.721	67.351	50	0.51
T_36	0.2044	40	51.1	5.503	83.446	50	0.51
T_37	0.1927	35	55.057	4.813	77.088	50	0.51
T_38	0.1353	20	67.65	4.973	78.645	50	0.51
T_39	1.7895	80	223.688	4.699	72.784	50	0.51
T_40	0.0808	15	53.867	6.074	76.452	50	0.51
T41	0.0224	10	22.4	6.856	70.721	50	0.51
T_42	0.105	50	21	8	75.657	50	0.51
T_43	3.8802	80	485.025	7.827	74.717	50	0.51
T_44	0.0239	10	23.9	6.233	74.614	50	0.51
T_45	0.0559	40	13.975	5	86.347	50	0.51
T_46	1.1491	60	191.517	2.219	75.237	53	0.63
T_47	0.0081	5	16.2	2.52	84.324	50	0.51
T_48	2.6441	120	220.342	2.972	85.647	50	0.51
T_49	0.0499	40	12.475	4.834	87.974	50	0.51
T_50	0.0422	30	14.067	4.611	88.82	50	0.51
T_51	0.0331	20	16.55	5	82.386	50	0.51
T_52	0.5291	50	105.82	4.369	64.313	50	0.51
T_53	0.5212	70	74.457	2.987	72.009	50	0.51
T_54	0.0685	10	68.5	2.475	77.835	50	0.51
T_55	0.6208	60	103.467	8.18	77.797	50	0.51
T_56	1.9492	120	162.433	4.929	73.691	50	0.51
T_57	0.2537	25	101.48	3.547	70.838	50	0.51
T_58	0.5225	100	52.25	4.242	73.572	50	0.51
T_59	0.4609	120	38.408	8	76.255	50	0.51
T_60	0.0871	30	29.033	7.327	79.535	50	0.51
T_61	1.145	60	190.833	5.619	76.232	50	0.51
T_62	0.211	65	32.462	10	74.994	50	0.51
	0.1659	55	30.164	10	74.978	50	0.51
 T_64	0.2954	20	147.7	3.41	86.103	50	0.51
 T_65	0.1419	80	17.738	3.11	75.014	50	0.51
 T_66	1.145	150	76.333	4.732	79.392	50	0.51
 T_67	0.0531	30	17.7	8.496	74.921	50	0.51
	0.0001	0.5	2	3.417	84.329	61	1

City-Wide Flood Risk Assessment and Storm Outlet Review City of Pembroke

Та	able F.5: Sew	er Pipe Inform	nation for the An	malgamated Mo	odel
Name	Length	Roughness	Inlet Elev.	Outlet Elev.	Diameter
	(m)		(m)	(m)	(m)
18_0001	45.887	0.013	111.033	110.494	0.9
18_0002	63.155	0.013	111.557	111.033	0.9
18_0003	23.29	0.013	112.807	111.557	0.9
18_0004	20.248	0.013	114.074	112.807	0.9
18_005	64.174	0.013	117.454	114.074	0.9
18_008	68.906	0.013	118.355	117.966	1.5
18_012	13.264	0.013	119.679	117.671	0.525
18_014	8.35	0.013	119.907	119.818	0.525
18_016	32.723	0.013	120.09	119.907	0.525
18_017	23.227	0.013	120.309	120.066	0.525
18_019	66.234	0.013	120.574	120.309	0.525
18_045	37.134	0.013	120.692	117.454	0.9
18_051	43.153	0.013	121.321	120.726	0.9
18_054	108.915	0.013	123.664	121.321	0.9
18_058	38.852	0.013	124.606	123.684	0.9
18_059	9.222	0.013	124.636	124.606	0.9
18_060	3.523	0.013	124.7	124.636	0.9
18_063	13.236	0.013	124.89	124.7	1
18_078	24.992	0.013	126.377	126.233	1
18_079	60.11	0.013	127.034	126.377	0.9
18_1	36.772	0.013	120.706	120.578	0.8
18_129a	6.991	0.013	147.556	147.503	0.75
18_129b	14.898	0.013	147.503	147.454	0.75
18_170	9.144	0.013	150.495	150.362	0.3
18_171	35.139	0.013	150.693	150.495	0.3
18_174	44.099	0.013	149.872	149.647	0.3
18_176	13.831	0.013	149.366	148.758	0.3
18_178	89.425	0.013	148.758	146.297	0.3
18_179	38.283	0.013	146.287	145.812	0.5
18_180	41.3	0.013	145.812	145.87	0.5
18_2	33.722	0.013	120.578	120.522	0.8
18_201	21.184	0.013	144.876	143.695	0.45
18_202	41.402	0.013	145.202	144.876	0.45
18_203	22.696	0.013	128.011	127.897	0.625
18_204	49.743	0.013	128.38	128.011	0.675
18_3	24.985	0.013	117.782	117.671	1.5
18_4	19.243	0.013	117.671	117.454	1.5
18_5	42.502	0.013	139.09	137.52	0.6
18_6	34.127	0.013	137.52	136.26	0.6
C1_1	81.155	0.013	126.048	124.832	0.675
 C1_2	8.568	0.013	124.832	124.734	0.675
 C20	22.753	0.013	118.765	118.355	1.2

City-Wide Flood Risk Assessment and Storm Outlet Review City of Pembroke

Name	Length	Roughness	Inlet Elev.	Outlet Elev.	Diameter
	(m)		(m)	(m)	(m)
C24	56.269	0.013	124.734	123.115	0.9
C35	18.551	0.013	122.838	122.556	0.31
C8_1	31.878	0.013	119.482	119.042	1.5
C8_2	17.397	0.013	119.042	118.765	1.5
C2	73.139	0.01	145.628	145.202	1
18_086	9.451	0.013	136.21	136.21	0.75
18_091	62.629	0.013	139.52	139.09	0.75
18_093	32.193	0.013	139.75	139.52	0.75
18_095	22.772	0.013	139.91	139.75	0.75
18_097	52.934	0.013	142.2	140.06	0.6
18_099	71.053	0.013	144.7	142.2	0.6
18_101	61.596	0.013	145.34	145.03	0.75
18_103	86.793	0.013	145.77	145.34	0.75
18_106	77.424	0.013	146.15	145.77	0.75
18_117	86.515	0.013	146.9	146.496	0.75
18_119A	10.341	0.013	147.05	147.018	0.75
18_119B	31.86	0.013	147.018	146.92	0.75
18_121	30.198	0.013	148.408	147.749	0.3
18_159	65.147	0.013	147.895	147.57	0.75
18_160	4.997	0.013	147.919	147.9	0.75
18_216	71.782	0.013	138.1	135.73	0.3
18_125	56.547	0.013	147.45	147.166	0.75
18_214	67.338	0.013	135.73	131.942	0.3
18_109	13.176	0.013	146.22	146.15	0.75
18_123	23.081	0.013	147.166	147.05	0.75
18_163	20.597	0.013	148.364	147.932	0.75
18_165	37.927	0.013	149.349	148.63	0.5
18_207	97.1	0.013	128.708	128.46	0.675
18_0114	85.588	0.013	146.45	145.979	0.75
18_026	99.747	0.013	120.99	120.573	0.45
18_037	118.081	0.013	121.66	121.052	0.375
18_038	20.47	0.013	122.032	121.845	0.375
18_046	101.437	0.013	120.158	120.021	0.9
18_048	14.909	0.013	120.246	120.226	0.9
18_081	85.164	0.013	127.798	126.958	0.7
18_082	19.504	0.013	128.16	127.938	0.6
18_084	63.431	0.013	132.534	128.344	0.6
18_085	59.119	0.013	136.153	133.116	0.6
18_110	33.481	0.013	146.366	146.28	0.45
18_130	6.972	0.013	147.751	147.659	0.36
18_132	40.054	0.013	148.207	147.75	0.46
	44.504	0.013	148.612	148.21	0.45
18_140	15.028	0.013	148.73	148.597	0.43

Name Length Roughness Inlet Elev. **Outlet Elev.** Diameter (m) (m) (m) (m) 18 142 32.003 0.013 148.966 148.835 0.29 9.4 18 143 0.013 149.118 149.062 0.28 18 144 67.138 0.013 149.73 149.106 0.28 18 147 0.013 149.047 148.966 0.36 15.388 18_149 66.449 0.013 149.445 149.134 0.28 149.45 18 151 9.961 0.013 149.43 0.28 18_154 69.84 0.013 149.86 149.499 0.27 18_167 42.537 0.013 150.117 149.715 0.3 18_169 15.415 0.013 150.277 150.202 0.3 18_175 51.168 0.013 149.634 149.213 0.3 0.013 0.5 18_181 47.57 145.863 145.719 18_183 69.607 0.013 140.25 136.617 0.6 18 184 50.304 0.013 141.345 140.218 0.6 18_187 47.379 0.013 141.521 141.328 0.6 18_188 46.516 0.013 141.714 141.56 0.675 18 189 22.453 0.013 141.822 141.758 0.675 18_190 46.093 0.013 142.026 141.81 0.675 18 193 47.953 0.013 142.282 142.109 0.675 18 195 16.559 0.013 142.591 142.54 0.35 0.013 144.122 142.662 0.3 18_196 55.931 18_199 55.814 0.013 143.583 143.018 0.45 18_208 123.498 0.013 130.746 128.818 0.525 18 210 12.565 0.013 130.911 130.847 0.525 18_212 42.348 0.013 131.959 130.902 0.6 90.078 0.013 0.675 C108 121.602 120.903 C28 61.123 0.013 121.791 120.685 0.9 C31 92.118 0.013 121.956 121.625 0.675 C36 67.783 0.013 120.338 119.599 1.2 C37 61.862 0.013 125.341 123.271 0.45 0.013 C38 71.103 123.18 120.698 0.45 C41 64.165 0.013 122.507 122.357 0.5 C6 56.689 0.013 122.21 122.012 0.675

City-Wide Flood Risk Assessment and Storm Outlet Review *City of Pembroke*

Name	Length	Roughness	Inlet Elev.	Outlet Elev.	Diameter
	(m)		(m)	(m)	(m)
44_0001	67.375	0.013	115.897	113.277	0.3
44_0004	8.752	0.013	116.013	115.897	0.3
44_0005	3.845	0.013	116.925	116.827	0.2
44_0007	12.983	0.013	117.09	116.925	0.2
44_0013	48.3	0.013	118.814	116.075	0.2
C41_2	7.67	0.013	116.91	116.741	0.2
C43	40.6	0.013	116.693	115.839	0.2
44_0008	42.9	0.013	116.525	116.339	0.2
C42	5.7	0.013	116.336	116.033	0.2
C40	53.9	0.013	116.913	116.66	0.2

Table F.6: Sewer Pipe Information for the Darcy Model

Table F.7: Sewer Pipe Information for the Lake Street Area Model

Name	Length	Roughness	Inlet Elev.	Outlet Elev.	Diameter
	(m)	-	(m)	(m)	(m)
09_0004	9.203	0.013	110.841	110.704	0.9
09_0005	18.426	0.013	110.983	110.841	0.9
09_0007	7.917	0.013	111.036	110.983	0.9
09_0008	15.13	0.013	111.208	111.036	0.9
09_0009	40.722	0.013	111.69	111.208	0.9
09_0014	4.164	0.013	111.964	111.92	0.75
09_0015	6.728	0.013	112.123	111.964	0.75
09_0019	17.605	0.013	112.234	112.123	0.75
09_0021	0.65	0.013	112.238	112.234	0.75
09_0022	35.062	0.013	112.501	112.238	0.75
09_0023	17	0.013	112.86	112.501	0.45
09_0042	89	0.013	112.65	111.729	0.6
09_0043	10.829	0.013	111.237	111.199	0.3
09_0044	78.466	0.013	111.568	111.237	0.6
09_0048	14.622	0.013	112.081	111.84	0.3
09_0049	28.403	0.013	112.491	112.081	0.3
10_0001	67.4	0.013	110.655	109.936	0.375
10_0002	54	0.013	111.182	110.655	0.375
21_0001	34.7	0.013	111.725	109.686	0.675
10_0010	4	0.013	112.895	112.879	0.25
09_0012	39.407	0.013	111.92	111.758	0.75
10_0008	40.3	0.013	112.874	112.32	0.25
C50	34	0.013	113.28	113.11	0.3
C52	42.5	0.013	113.11	112.9	0.3
C53	3.5	0.013	112.9	112.623	0.3
09_0001	127.2	0.013	110.932	109.279	0.75
09_0002	95.6	0.013	111.1	110.969	0.75
09_0036	13.043	0.013	112.651	112.42	0.3

City-Wide Flood Risk Assessment and Storm Outlet Review City of Pembroke

Name	Length (m)	Roughness	Inlet Elev. (m)	Outlet Elev. (m)	Diameter (m)
09_0040	14.7	0.013	111.792	111.593	0.6
10_0004	52.7	0.013	111.343	111.182	0.375
10_0006	26.3	0.013	111.833	111.362	0.375
10_0007	40.7	0.013	112.32	111.874	0.375
21_0003	70	0.013	111.893	111.725	0.675
21_0006	40	0.013	112.217	112.04	0.43
21_0008	55.2	0.013	112.522	112.207	0.525

Table F.8: Sewer Pipe Information for the Trafalgar Model

Name	Length	Roughness	Inlet Elev.	Outlet Elev.	Diameter
	(m)	-	(m)	(m)	(m)
06_0001	32.9	0.013	111.766	109.705	0.6
06_0019	18	0.013	118.016	116.297	0.6
06_0048	105.979	0.013	127.282	125.617	0.375
06_0050	38.224	0.013	127.822	127.416	0.3
06_0082	11.283	0.013	120.34	119.995	0.6
06_0083	50.2	0.013	122.022	120.34	0.6
06_0085	17.512	0.013	122.545	122.492	0.75
06_0086	23.017	0.013	122.657	122.545	0.75
06_0087	28.123	0.013	122.807	122.715	0.75
06_0089	36.553	0.013	122.916	122.807	0.75
06_0091	40.373	0.013	123.201	122.916	0.75
06_0092	12.584	0.013	123.278	123.201	0.525
06_0093	8.122	0.013	123.328	123.278	0.525
06_0098	46.319	0.013	125.361	124.836	0.675
06_0100	10.088	0.013	125.447	125.361	0.675
06_0101	6.224	0.013	125.523	125.447	0.675
06_0103	53.52	0.013	125.838	125.575	0.675
06_0104	27.563	0.013	126.013	125.838	0.375
06_0105	35.455	0.013	126.297	126.013	0.375
06_0129	68.714	0.013	126.699	126.55	0.45
06_0131	0.729	0.013	126.714	126.699	0.375
06_0132	10.314	0.013	126.782	126.714	0.375
06_0134	70.342	0.013	130.196	126.86	0.375
06_0135	46.244	0.013	131.838	130.196	0.375
08_0051	8.505	0.013	126.702	126.5	0.25
08_0052	6.825	0.013	127.24	126.702	0.25
08_0062	8.291	0.013	132.762	132.564	0.2
08_0063	9.302	0.013	132.939	132.762	0.2
08_0072	22.3	0.013	132.306	131.759	0.2
ABL-P1	4.409	0.013	127.416	127.362	0.3
ABL-P2	8.757	0.013	127.362	127.282	0.3
06_0020	40.5	0.013	119.31	119.18	0.31

City-Wide Flood Risk Assessment and Storm Outlet Review City of Pembroke

Name	Length (m)	Roughness	Inlet Elev. (m)	Outlet Elev. (m)	Diameter (m)
06_0106	18.5	0.013	126.61	126.297	0.2
06_0136	49.1	0.013	132.466	131.957	0.2
08_0050	84.9	0.013	126.5	126.31	0.25
08_0054	67.1	0.013	120.5	120.31	0.23
08_0056	73.7	0.013	127.95	127.24	0.2
	9.1	0.013			0.2
08_0057	-		128.06	127.95	
08_0059			132.503	128.58	0.2
08_0060	19.1	0.013	133.123	132.595	0.27
08_0067	96	0.013	130.436	127.01	0.25
08_0068	-		131.741	131.436	0.2
06_0124	101	0.013	125.922	125.072	0.375
06_0022	122.7	0.013	119.708	119.31	0.31
06_0002	106.5	0.013	112.952	112.252	0.575
06_0009_1	20.541	0.013	113.582	113.28	0.6
06_0009_2	83.079	0.013	113.28	112.052	0.6
06_0014	56.1	0.013	114.337	113.575	0.6
06_0018	66.7	0.013	116.297	114.333	0.6
06_0024	103	0.013	120.096	119.772	0.31
06_0025	29.7	0.013	120.247	120.126	0.31
06_0028	97.325	0.013	120.603	120.236	0.25
06_0031	90.487	0.013	120.868	120.601	0.375
06_0032	18.7	0.013	121.119	120.839	0.375
06_0033	81	0.013	121.291	121.138	0.9
06_0040	61.5	0.013	122.022	121.878	0.9
06_0043	26.813	0.013	123.61	122.891	0.375
06_0045	33	0.013	124.45	123.635	0.375
06_0047	41.262	0.013	125.548	124.463	0.45
06_0081	12.387	0.013	119.885	119.146	0.6
06_0084	38.6	0.013	122.438	121.998	0.6
06_0095	43.35	0.013	123.565	123.373	0.525
06_0095A	59.867	0.013	123.822	123.561	0.525
06_0096	7.2	0.013	124.8	123.889	0.675
06_0118	0118 12.5 0.013		122.245	122.072	0.45
06_0119	46.7	0.013	122.614	122.235	0.45
06_0122	35.4	0.013	122.868	122.635	0.45
06_0123	40.4	0.013	125.126	122.873	0.375

Table F.9: IDF Coefficients

Return period	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr
А	20.1	26.7	31.1	36.5	40.6	44.6
В	-0.699	-0.699	-0.699	-0.699	-0.699	-0.699

			T	able F.10:	IDF Curves	5			
	5-min	10-min	15-min	30-min	1-hr	2-hr	6-hr	12-hr	24-hr
Duration				Int	ensity (mr	n/h)			
2-yr	114.2	70.3	53	32.6	20.1	12.4	5.7	3.5	2.2
5-yr	151.7	93.4	70.4	43.3	26.7	16.4	7.6	4.7	2.9
10-yr	176.6	108.8	82	50.5	31.1	19.2	8.9	5.5	3.4
25-yr	207.3	127.7	96.2	59.3	36.5	22.5	10.4	6.4	4
50-yr	230.6	142.1	107	65.9	40.6	25	11.6	7.1	4.4
100-yr	253.3	156	117.5	72.4	44.6	27.5	12.7	7.9	4.8

Table F.11: Design Storms

Time	5-yr Storm	100-yr Storm
(Hr)	Depth (m)	Depth (m)
0	0	0
0.25	1.480246	2.47262
0.5	1.480246	2.47262
0.75	6.249926	10.43995
1	17.10506	28.5725
1.5	4.276265	7.143125
2	2.302604	3.846298
2.5	0	0

APPENDIX G

Outfall Assessment Field Notes

		Wat	ercourse	and C	rossin	g Loca	tion		ID Numb	ber	Date	9	
	the	the	Biver	Mus 1	krat				27		Nov 11	: 39	2021
	Barrel Sh	nape	Materi	al	No. Barr		Enc Upstrea		tments Downstro	eam	Dimens	ion	
	Circular	R	Timber	Г	One	X	Projecting	Г	Projecting		Diame	ter	
	Box		Concrete		Two	Г	Mitered		Mitered			cm	
		82-03V					wittered	1	IVILLETED	1	IZ	n	
	Pipe-Arch	Г	CMP	R	Three	Г	Headwall	M	Headwall	X	Spar	n	
	Elliptical	Г	PVC	Г	Four	Г	Wingwalls	F	Wingwalls	Г		cm	
	Other:		Other: Cg	P	Other:		Other:		Other:		Rise	3	
				ist irm	outer		otner		00000			cm	
			erformar			:			ition	Over	all Rating	g	
	Debris/Ve							No		Good		Г	
	Sediment Buoyancy		· ·					No					
	Poor Char			accura	anuic			No		Fair			
	Previous			Overt	opping			Critic	cul				
	Local Sco							Criti	ical	Poor		Г	
	Embankm		1.					No	1				
	Channel D	egrada	ation					No	-Critial	Critica	al	X	
	Headcut			.1				Critic	4				
	Embankm Sediment							EU O		Unkno	own	Γ	
	Sediment				rough	out		No					
	Barrel	Diocita	50-1/01	doe 11	nough	Juc		No			rmance	—	
	Submerge	ed / En	ds Totally	Buried	d			No		Proble	ems		
	Aggressiv							No					
	Exposed H					Only)		105					
		ategory		Rati	-								
	Invert Det		on		ritical								
	Joint and S	Seams		C	rit								
	Corrosion	/ Chem	ical		N/X								
	Cross-Sect	ion Def	ormation										
	Cracking				crit								
	Headwall ,	/ Wingv	vall	C	-rit								
	Apron				NIA								
	Flared End	Sectio	n		N/A								
	Scour Prot	ection			Crit								
Notes	- Bon	64	CS P MARA	Mis	sing	betw	een upst	ream	Cast ir	on	pipe	and	headwall
(. Large	e Car	icrete		cks	pat	outtall	of	Cast	iran	pipe		
Y	. Large Manhole	aur		40	hau	r f	allen, pos	sibly	hire -	to l	oank	erosi	on, causing
	failure	of	pipe										

	tercourse and	. 0	tion		ID Numb	ber	Date
Indian Riv	er, Christie	>†			41		Nov 8
Barrel Shape	Material	No. of Barrels	End Upstrea	l Treatı m	nents Downstre	eam Di	mension
Circular 🏹	Timber	One 🖄	Projecting	ΓI	Projecting		Diameter
Box 🗆	Concrete 🗹	Two Γ	Mitered	F M	Mitered	Г	an 53 cm
Pipe-Arch □	CMP Γ	Three Г	Headwall	× >I	Headwall	Г	Span
Elliptical Г	PVC 🗆	Four Г	Wingwalls	Γ \	Wingwalls	Г	cm
Other:	Other <u>:</u>	Other <u>:</u>	Other: Outf	durked c)ther:		Rise cm
	Performance Pr ockage > 1/3 of R			Locat	ion	Overal	Rating
	age $1/3$ to $3/4$ o			Nº		Good	Γ
Buoyancy or Cr	ushing-Related H			NIA			
Poor Channel A				Yes		Fair	
Local Scour	r Frequent Over	topping		Vec		Poor	Γ.
Embankment P	iping			No		1 001	·
Channel Degrad			~ Ye	5 (expose	ed formulation	Critical	X
Headcut				No			
Embankment Sl Sediment Block				No		Unknow	n Г
	age > 3/4 Rise age > 1/3 Rise T	hroughout		No			
Barrel	uges 1/0 tuse t	moughout		NA		Perform Problem	
Submerged / Er	nds Totally Burie	ed		No		FIODIem	15
	asion / Corrosion			No			
	g (Open Bottom			No			
Catego Invert Deteriorat	5	ing www.					
Joint and Seams		Critical					
Corrosion / Cher		Good					
Cross-Section De		No					
Cracking	Torritation	Critical					
Headwall / Wing	wall	Good					
Apron	, , , , , , , , , , , , , , , , , , ,	NAA		-			
Flared End Section	on	NIA					
Scour Protection		Row None / Po	or				

Notes: "I" Crock from soffling, crachked all through wall, 3M of circumference Leakings from crack . Outflanked - Another crack at seam, 1"

		tercourse • < Krwt	and C	rossin	g Loca	tion		ID Numl 35	ber	Date	e 10,201	21
	M	ngkron										
Barrel Sł	nape	Materi	al	No. Barr		Enc Upstrea		tments Downstr	eam	Dimens	ion	
Circular	X	Timber	Г	One	Ø	Projecting	Г	Projecting		Diame		
Box	X	Concrete	×	Two	Г	Mitered	Г	Mitered	Г	102	cm	Circular
Pipe-Arch	ηΓ	CMP	Γ	Three	Г	Headwall	Г	Headwall	X	Spa		
Elliptical	\square	PVC	Γ	Four	Г	Wingwalls	Г	Wingwalls	Г	123		box
Other:		Other <u>:</u>		Other:		Other:		Other: Arm	antime lunt	Rise 125		NUA
	I	Performa	ice Pr	oblems	5			ation	Ove	rall Ratin	g	
		ckage > 1, age 1/3 to					N.	,	Good	l	Г	
	y or Cr	ushing-Re					No No		Fair			
Local Sco	ur	r Frequen	t Overt	opping	5		Ves		Poor		Г	
Embankr Channel I Headcut		Contraction of the second s					NO		Critic	al	×	
Embankr		lope Instal					NUNU		Unkn	own	Г	
		tage > $3/4$ tage > $1/3$		hrough	out		No		Dorfo	ormance		
Barrel				1997 - 1997 - 19 97 - 1997 -			No		Prob		Γ	
Aggressiv	ve Åbr	nds Totally asion / Co	rrosior	n / Chei		N						
		ig (Open B			Only)		No					
	atego	ry tion	Rat	- I								
				Critics	1							
Joint and				Gord								
Corrosion				6								
	tion D	eformation		Criti	cal							
Cracking Headwall	/ Wing	wall		Gos								
Apron	/ vviii	50000		w1	-							
Flared En	d Secti	on		N/A	}							
Scour Pro				Nine	1 Criti	cal						
No	tes.	· 6. , Fa	ilune	lvert	appen beix	Noneiren i condition rs to he culturt pipe	treo	ted into	nel	hax t	to	failed
			sther		1. 2.4k	1.12	1001	Unit				- w 1

Watercourse and Crossing Location

ID Number

Date Nov 10, 2021

Barrel Shape	Mater	ial	No. Barı		Enc Upstrea		tments Downstr	eam	Dimension
Circular 🕅	Timber	Г	One	ĊM.	Projecting	Г	Projecting	10	Diameter
Box 🗆	Concrete		Two	F	Mitered	Γ	Mitered	Г	12 ¹
Pipe-Arch □	CMP	X	Three	Г	Headwall	Г	Headwall	Г	Span
Elliptical Г	PVC	Г	Four	Г	Wingwalls	Г	Wingwalls	Г	cm
Other:	Other <u>:</u>		Other:	<u> </u>	Other:		Other:		Rise
									cm
	Performan			S		Loc:	ation	Ove	rall Rating
Debris/Veg. Blo Sediment Block						No		Good	
Buoyancy or Ci	rushing-Re					No		Fair	
Poor Channel A Previous and/o		t Over	topping	é.		No		raii	
Local Scour	•		F F 6	,		Yes		Poor	X
Embankment F Channel Degra						No		Critic	
Headcut						No		Chuc	ai
Embankment S Sediment Block						No		Unkn	iown Г
Sediment Block			hrough	out		No		Dorfe	
Barrel	400					No		Prob	lems
Submerged / E Aggressive Abr				nical	Ye	s Nu			
Exposed Footir	ng (Open Be	ottom	Culvert			10° (f	ł		
Catego	1.17		ing						
Invert Deteriora			Soud Door	6					
Joint and Seams			Poor						
Corrosion / Che Cross-Section D			No						
Cracking	eronnation		No						
Headwall / Wing	owall		NIA						
Apron	Swan		NA						
Flared End Secti	ion		NIA	f					
Scour Protection			Fram	Poor					
	. Roundst	at o out	used but fall.		scour pr shed out,	Batta	n but	5 ope livert	is Nerry Steep is rusted through

In	Wa dion	itercourse	and	Crossin	g Loc	ation		ID Numl ろ丨	oer	Date Nov 8,202 13:00
Barrel Sh	nape	Materi	al	No. Barr		En Upstrea		atments Downstro	eam	Dimension
Circular	R	Timber	Г	One	Ø	Projecting	Г	Projecting		Diameter
Box		Concrete		Two	Г	Mitered	Г	Mitered	Г	cm
Pipe-Arch		CMP	Г	Three		Headwall	the	Headwall	K	W.75^
	Г	PVC	R		_		51 P			Span cm
			X	Four	1	Wingwalls		Wingwalls	Г	Rise
Other:		Other:		Other:		Other:		Other:		cm
	1	Performan	ice Pr	oblems			Loc	ation	Ove	rall Rating
Debris/Ve		ckage > 1/			8		No			. /
		age $1/3$ to					NO		Good	X
		ushing-Rel	ated F	Failure			No	•		_
		lignment	-				No	(Yes for CSP)	Fair	
revious a .ocal Scou		r Frequent	Over	topping			No	Lites for CDI)	D	-
Embankm		ining					No		Poor	1
Channel D						No	Nes	(at CSP)	Critic	
Headcut	-9.40						NO		Unito	di i
Embankm	nent S	lope Instab	ility				No		Unkn	own E
		age > 3/4 I					No		Unit	own
	Block	age > 1/3 I	Rise T	hroughe	out		No		Perfc	rmance _
Barrel	d/E	de Teteller	Dunia	-		1	No		Probl	
Aggressiv Exposed F	e Abra	nds Totally asion / Cor g (Open Bo r v	rosio	ı / Chen Culvert		No/Yes	(CS	r)		
nvert Det	-			U		Good				
oint and S					<u>.</u>	NA				
Corrosion		nical		6	160	NA Fair (CS)	P)			
		formation			-1		1			
Cracking						Good				
leadwall /	Wing	wall				Fair				
pron						NIA				
lared End	Section	าท				N/A N/A Fair (CS	N			
cour Prot						Fair (CS	(9)			
1 stes:		pipe C Jery S	on velo	js wa	afer		out	fall fe	, cl	ranne (
N1 11	1 C	NA . C	hall	ino	- 10					

. CSP is pieror condition bat : 1 section downs tream is undermined, 1 tell fallen. Some rust corrosian.

Wa Indian R ⁱ	tercourse	and	Crossin	g Loca	ation		ID Numl 45	ber	Date Nov 6, 202 10:12
Barrel Shape	Materi	ial	No. Bari		Enc Upstrea		itments Downstre	eam	Dimension
Circular 🦷	Timber	Г	One	X	Projecting	Г	Projecting	the state	Diameter
Box 🗆	Concrete	\bowtie	Two	Г	Mitered	Г	Mitered	Г	7.75m
Pipe-Arch □	CMP	Г	Three	Г	Headwall	Г	Headwall	Г	Span
Elliptical Г	PVC	Г	Four	Г	Wingwalls	Г	Wingwalls	Г	cm
Other:	Other:		Other:		-		Other: Nm		Rise
	<u> </u>		other		other.		Other: which		cm
	Performan	김 영화 전에 전에 전에 주셨다.	- C	S			ation	Ove	erall Rating
Debris/Veg. Blo						NO		Good	
Sediment Block						No		100000	5.0 U.S.
Buoyancy or Cr Poor Channel A		lated	anure			No		Fair	
Previous and/o		Over	tonning			Yes		i un	
Local Scour	rrequem	Uver	copping	5		Yes		Poor	_
Embankment P	ining					No		FUUI	1
Channel Degrad						No		0.11	
Headcut	ation					No		Critic	al 🕅 🕅
Embankment S	one Instak	vility				No		1000011001	
Sediment Block						No		Unkn	iown 🛛
Sediment Block			hrough	out		No		1238 76.5	
Barrel	460 - 1/0	nuoe i	mougn	out		N/	4		prmance
Submerged / Er	nds Totally	Burie	bd			Yes		Probl	lems
Aggressive Abra				nical		No			
Exposed Footin						NI	4		
Catego			ing	, sing j					
Invert Deteriora			Sood						
Joint and Seams	50050000 		ritical						
Corrosion / Cher	nical		Good						
Cross-Section De			0.00						
	Lui mation	(Tritica	1					
Cracking			N/A	<u>(2)</u>					
Headwall / Wing	wall								
Apron			N/A						
Flared End Section	on		NIA	,					
Scour Protection	di i		None/	Par					

Notes . 30° broken / detached pipe section, 147 between sections . At seam, pipe is in good condition but is recessed into the bank

Wa India	atercourse	e and	Crossing	g Loca	ation		ID Numl 42	oer	Date Nrv 8,202
Barrel Shape	Mater	ial	No. Barr		Enc Upstrea		atments Downstre	eam	16:03 Dimension
Circular 📈	Timber	Г	One	₽.	Projecting	Г	Projecting		Diameter
Box 🗆	Concrete	Ø	Two	Г	Mitered	Г	Mitered	Г	cm 24 V
Pipe-Arch □	CMP	Г	Three	Г	Headwall	Г	Headwall	K	Span
Elliptical Г	PVC	Г	Four	Г	Wingwalls	Г	Wingwalls	X	cm
Other <u>:</u>	Other <u>:</u>		Other <u>:</u>		Other:		Other:		Rise cm
	Performa						ation	Over	all Rating
Debris/Veg. Blo Sediment Block						N	0	Good	Γ
Buoyancy or Cr Poor Channel A Previous and/o	ushing-Re lignment	lated	Failure			Λ	0 10 10	Fair	X
Local Scour Embankment P	•	e over	topping				1 s V s	Poor	× ·
Channel Degrad Headcut							No No	Critica	al 🗆
Embankment S Sediment Block		10-10-10-10-10-10-10-10-10-10-10-10-10-1					N, No	Unkno	own 🗆
Sediment Block Barrel Submerged / E Aggressive Abr Exposed Footin Catego	tage > 1/3 nds Totally asion / Con ng (Open B	Rise T y Burie rrosio ottom	ed n / Chen	nical		1	V 6 N 6 N 0	Perfor Proble	rmance ems ┌┌
Invert Deteriora	tion		Good						
Joint and Seams Corrosion / Cher Cross-Section De	mical eformation		Man Co	000					
Cracking Headwall / Wing	gwall 🕴	Fair /	Fair Critical N/A N/A						
Apron	77 A 17 A 17 A 18 A 28 A 28 A		N/A						
Flared End Secti Scour Protectior	on า		N/A Fair						

-

Indian Rive	atercourse		S+	g Loca	tion		ID Numb	ber	Date N 10 8, 20 9:36 am
Barrel Shape	Materi	5	No. Barr		End Upstrea		4 tments Downstre	6 eam	Dimension
Circular 🕅	Timber	\Box	One	Ø	Projecting	Г	Projecting	X	Diameter
Box 🗆	Concrete	X	Two	Г	Mitered	Γ	Mitered	Г	4 cm 12.5"
 Pipe-Arch □	CMP	F	Three		Headwall	Г	Headwall	Г	Span
Elliptical	PVC							-	cm
General Constant And And Constant		4	Four		Wingwalls	Г	Wingwalls	1	Rise
Other:	Other <u>:</u>		Other <u>:</u>		Other:		Other: When	e	cm
	Performar	ice Pr	oblems	;		Loca	ation	Ove	rall Rating
Debris/Veg. Bl						No		Good	
Sediment Bloc						No		0000	
Buoyancy or C Poor Channel A		ateu i	anure			No		Fair	
Previous and/		Over	topping			Yes			1 .
Local Scour						No		Poor	×
Embankment I						No		.	
Channel Degra Headcut	dation					No		Critic	al
Embankment S	Slope Instab	oility				NO		Unkn	
Sediment Bloc	kage > 3/4	Rise				NONO		UTKI	OWN)
Sediment Bloc	kage > 1/3	Rise T	hrough	out		NIA		Perfo	ormance 😿
Barrel Submerged / E	nde Totally	Buric	d			Yes		Probl	
Aggressive Ab				nical		No			
Exposed Footi						No			
Catego			ing	14					
Invert Deteriora	ation		in a c						
Joint and Seam	5		Posi-	1					
Corrosion / Che	mical		bo.	e l					
Cross-Section D	eformation		b.	for					
Cracking			Pa	or					
Headwall / Win	gwall		10	141					
Apron			N						
Flared End Sect			N		r.				
Scour Protectio	n		Nan	ve/6003					
Clay pipe 1040 sediment Resident 5 Sediment 6	seam inte fine aid it	Sand Nas	rok ripe, (1) ; out	3/4 ⁽¹⁾ deep	crack) of Comm	n' 3590	on		

-

Watercourse and Crossing Location									ID Numb らん	oer	Date Nov 8, 2021 15:46
Barrel Shape		Material		No. of Barrels		End Tre Upstream			ments Downstre	eam	Dimension
Circular	×	Timber	Г	One	Ø	Projecting		-	Projecting		Diameter
Box		Concrete		Two	Г	Mitered	Г		Mitered	Г	cm
Pipe-Arch		CMP	R					**		her.	Aller 12"
			V .	Three		Headwall	1	E.	Headwall	R	Span
Elliptical		PVC	Г	Four	Г	Wingwalls	sΓ		Wingwalls	Г	cm Rise
Other:		Other <u>:</u>		Other:		Other:			Other:		cm
		D 6	D-							~	
Debris/Ve		Performan							ation Yes	Ove	rall Rating
Debris/Veg. Blockage > 1/3 of Rise Sediment Blockage 1/3 to 3/4 of Rise								Yes		Good	
Buoyancy or Crushing-Related Failure							No				-
Poor Channel Alignment									Fair		
Previous and/or Frequent Overtopping Local Scour								Yes		Poor	×
Embankment Piping											
Channel D				No		Critic	al 🗆				
Headcut											
Embankm				No		own Г					
Sodiment Blockage > 1/2 Pice Throughout											
Barrel	Jul		-1	Perfo			ormance				
		nds Totally					S	yer	NO	FIUD	ICITIS
		asion / Cor						No			
	ootin itego	g (Open Bo rv		Culvert ing	Only						
Invert Dete	-	1.50	Itter		1	T.					
Joint and S					600	1					
Corrosion					Fa						
		eformation		Ma	her f	air					
Cracking						bool					
Headwall /	Wing	wall			C	ritical					
Apron	10	10				NIA					
Flored End Section											
Scour Prot	ectior	ı			N	one thank to					
otes: · Heada · En	vall d	destroyed partrally	bur	ied i	ind Cham.	crushe s	ligh	thy	icrushed		

NOT LOCATED - Litely Dur jed Uppler duriped veg, Watercourse and Crossing Location **ID Number** Date Nov 8,2021 43 Rher Indian 11:06 No. of **End Treatments Barrel Shape** Material Dimension Barrels Upstream Downstream Diameter Circular Timber Г One 🛛 Projecting Г Projecting cm Box Concrete Two Г Mitered Г Mitered Г Pipe-Arch □ CMP Г Three □ Headwall Г Headwall Г Span Elliptical PVC Г cm Four [Wingwalls Wingwalls Г Rise Other: Other: Other:_____ Other: Other: cm **Performance Problems** Location **Overall Rating** Debris/Veg. Blockage > 1/3 of Rise Good Sediment Blockage 1/3 to 3/4 of Rise **Buoyancy or Crushing-Related Failure** Fair Poor Channel Alignment Previous and/or Frequent Overtopping Local Scour Poor Г Embankment Piping **Channel Degradation** Critical Г Headcut Embankment Slope Instability Unknown Г Sediment Blockage > 3/4 Rise Sediment Blockage > 1/3 Rise Throughout Performance Barrel Problems Submerged / Ends Totally Buried Aggressive Abrasion / Corrosion / Chemical Exposed Footing (Open Bottom Culvert Only) Category Rating Invert Deterioration Joint and Seams Corrosion / Chemical **Cross-Section Deformation** Cracking Headwall / Wingwall Apron Flared End Section Scour Protection Notes: found remnants of broken concrete pipe

Barrel ShapeMaterialNo. of BarrelsEnd TreatmentsDimensionCircularIXTimberOneIXUpstreamDownstreamDimensionBoxConcreteTwoMeredProjectingProjectingDimensionDimensionBoxConcreteTwoMered	Watercourse and Crossing Location Indian River, Christie								ID Num	ber Ss	Date Nov 8 9 : 50
Circular IXTimber Γ One \square Projecting Γ Projecting \square DiameterBox \square Concrete \square Two Γ Mitered Γ Mitered K \mathcal{W}_{D} $\widehat{T}_{\bullet,T5}$ **Pipe-Arch Γ CMP Γ Three Γ Headwall K SpanElliptical Γ PVC K Four Γ Wingwalls Γ Wingwalls K Other:Other:Other:Other:Other: Cm RiseDebris/Veg. Blockage > 1/3 of RiseNoCocationOverall RatingBuoyancy or Crushing-Related FailureNoGood K Poor Channel AlignmentNoFair \square Previous and/or Frequent OvertoppingNoPoor Γ Local ScourNoCritical Γ Bubakment Slope InstabilityNoCritical Γ Sediment Blockage > 3/4 RiseNoNoCritical Γ Submerged / Ends Totally BuriedNoNoPerformance $Problems$ Submerged / Ends Totally BuriedNoNo No NoAgressive Abrasion / Corrosion / ChemicalNo No No Corrosion / ChemicalMo No Corrosion / ChemicalMo No Corrosion / ChemicalMo <th colspan="3">Barrel Shape Material</th> <th colspan="3"></th> <th colspan="2"></th> <th>3</th> <th>Dimension</th>	Barrel Shape Material								3	Dimension	
Box Concrete Two Mitered Mitered Kitered Kitered <t< th=""><th>Circular</th><th>TX</th><th>Timber</th><th>Г</th><th></th><th>1970</th><th>570</th><th></th><th></th><th></th><th>Diameter</th></t<>	Circular	TX	Timber	Г		1970	570				Diameter
Pipe-Arch Г CMP Г Three Г Headwall Г Headwall Span Elliptical Г PVC K Four Г Wingwalls Г Wingwalls K cm Other: Other: Other: Other: Other: cm Performance Problems Location Overall Rating Debris/Veg. Blockage > 1/3 of Rise No Good K Buoyancy or Crushing-Related Failure No Good K Poor Channel Alignment No Poor Fair I Previous and/or Frequent Overtopping YNo Fair I Channel Degradation No Critical F Headcut No Critical F Ediment Blockage > 1/3 Rise Throughout No Unknown F Sediment Blockage > 1/3 Rise Throughout No Unknown F Sediment Blockage > 1/3 Rise Throughout No Unknown F Submerged / Ends Totally Buried No No Vo F Submerged / Ends Totally Buried No No Vo F	Box		Concrete		Two	Г	Mitered	Γ	Mitered	K	
Other: Other: Other: Other: Other: Corr Performance Problems Location Overall Rating Debris/Veg. Blockage > 1/3 of Rise No Good Sediment Blockage 1/3 to 3/4 of Rise No Good Buoyancy or Crushing-Related Failure No Good Poor Channel Alignment Yes Fair Image: Construction of the second of the seco	Pipe-Arch	nГ	CMP	Г	Three	Г	Headwall	Г	Headwall	k	
Performance Problems Location Overall Rating Debris/Veg. Blockage > 1/3 of Rise N° Good K Sediment Blockage 1/3 to 3/4 of Rise N° Good K Buoyancy or Crushing-Related Failure N° Good K Poor Channel Alignment N° Sediment Previous and/or Frequent Overtopping Y* Fair Image: Constraint of the second	2545 82					Г	100		1000	K	Rise
Debris/Veg. Blockage > 1/3 of Rise N ⇒ Good K Sediment Blockage 1/3 to 3/4 of Rise N ⇒ Good K Buoyancy or Crushing-Related Failure N ⇒ Fair □ Poor Channel Alignment N ⇒ Fair □ Previous and/or Frequent Overtopping N ⇒ Poor □ Local Scour N ⇒ Poor □ Embankment Piping N ⇒ Ortical □ Channel Degradation N ⇒ Ortical □ Headcut N ⇒ Ortical □ Embankment Slope Instability N ⇒ Unknown □ Sediment Blockage > 3/4 Rise N ⇒ Unknown □ Sediment Blockage > 1/3 Rise Throughout N ⇒ Performance Problems Barrel N ⇒ N ⇒ Performance Problems □ Submerged / Ends Totally Buried N ⇒ N ⇒ N ⇒ Exposed Footing (Open Bottom Culvert Only) N ⇒ Caregory Rating N/A Good N/A Corrosion / Chemical N ⇒ Invert Deterioration N ⇒	Performance Problems								ation		
Display and you for daming related painting No Fair Image: Provide the pr	Sediment	Debris/Veg. Blockage > 1/3 of Rise Sediment Blockage 1/3 to 3/4 of Rise									
Local Scour Local Scour Embankment Piping Channel Degradation Headcut Embankment Slope Instability Sediment Blockage > 3/4 Rise No Sediment Blockage > 3/4 Rise No Sediment Blockage > 1/3 Rise Throughout Barrel Submerged / Ends Totally Buried Aggressive Abrasion / Corrosion / Chemical Exposed Footing (Open Bottom Culvert Only) Category Rating Invert Deterioration Vo Category Rating Invert Deterioration Vo Carcosin / Chemical No Cracking Headwall / Wingwall Apron No No Category No No Category Category No Category Categ	Poor Channel Alignment								Fair		
Channel Degradation No Critical Headcut No Unknown Embankment Slope Instability No Sediment Blockage > 3/4 Rise No Sediment Blockage > 1/3 Rise Throughout No Barrel No Submerged / Ends Totally Buried No Aggressive Abrasion / Corrosion / Chemical No Exposed Footing (Open Bottom Culvert Only) No Category Rating Invert Deterioration No Joint and Seams No Cracking Mo Headwall / Wingwall Mo Apron NIA	Local Scour								Poor		Г
Sediment Blockage > 3/4 Rise No Unknown Sediment Blockage > 1/3 Rise Throughout No Barrel No Submerged / Ends Totally Buried No Aggressive Abrasion / Corrosion / Chemical No Exposed Footing (Open Bottom Culvert Only) No Category Rating Invert Deterioration No Joint and Seams No Cross-Section Deformation No Cracking Mo Headwall / Wingwall Mo Apron N/A	Channel Degradation							No	Critical Г		al 🗆
Barrel u/A Performance Barrel No Submerged / Ends Totally Buried No Aggressive Abrasion / Corrosion / Chemical No Exposed Footing (Open Bottom Culvert Only) No Category Rating Invert Deterioration No Joint and Seams N/A Corrosion / Chemical No Cross-Section Deformation No Cracking No Headwall / Wingwall No Apron N/A	이 같은 것 같은								Unknown		own Г
Joint and Seams N/A Corrosion / Chemical Mo Good Cross-Section Deformation No Cracking Mo Good Headwall / Wingwall Mo Good Headwall / Wingwall N/A Elared End Section N/A	Settiment Blockage > 1/3 Kise ThroughoutNPerformanceBarrelNoProblemsSubmerged / Ends Totally BuriedNoAggressive Abrasion / Corrosion / ChemicalNoExposed Footing (Open Bottom Culvert Only)No										
Corrosion / Chemical Mis Good Cross-Section Deformation No Cracking Mis Good Headwall / Wingwall Mis Call ANN /A Apron N/A Elared End Section N/A	Invert Det	eriora	tion		Jour						
Cross-Section Deformation No Cracking Mar Good Headwall / Wingwall Mar DAAAAN N/A Apron N/A Elared End Section N/A		and the second				C I	í.				
Cracking Headwall / Wingwall Apron Elared End Section											
Apron NIA			eremation								
Apron NIA		/ Wine	wall		MAN	PAI	AGH N/A				
Elared End Section N/A		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Swan				114				
Scour Protection None/Gase		Section	on		N/	A					
					Nov	ne/ba	od				

Notes: . Glight drop but no scour protection . Pipe is mitered, concrete surronding is critical condition

Watercourse and Crossing Location ID Number Indran Rover, D'Arcy 44								ber		e v 8 36
Barrel Shape	Materi	al	No. Barı		Enc Upstrea		atments Downstro	eam [Dimens	sion
Circular 🔀	Timber	ГО	ne	区	Projecting	Г	Projecting		Diame	eter
Box 🗆	Concrete		wo	Г	Mitered	Г	Mitered	Г	11-	cm 75"
Pipe-Arch □	CMP	ГТ	hree	Г	Headwall	Γ	Headwall	Γ	Spa	n
Elliptical Г	PVC	K F	our	Г	Wingwalls	Г	Wingwalls	Γ		cm
Other:	Other:	0	ther:		Other: 🚹		Other: N/A		Ris	e
										cm
	Performar			5			ation	Overa	all Ratin	g
Debris/Veg. Blo						NN		Good		Г
Sediment Block Buoyancy or Cr		************************************				N				
Poor Channel A		acca i an	ui c			No		Fair		×
Previous and/o	r Frequent	: Overtop	ping			Ye	5	-		
Local Scour	ining					No		Poor		Γ
Embankment P Channel Degrad	-					No)	Critica	ı	_
Headcut						No		onica		1
Embankment S						No		Unkno	wn	Г
Sediment Block	-		ugh	aut		NO				
Sediment Block Barrel	age > 1/5	Rise Thro	Jugno	but		NIA	4		mance	Г
Submerged / Ei	nds Totally	Buried				Partic	ally subporged	Proble	ms	
Aggressive Abr	1.20				Yes	LA				
Exposed Footin	~ ~ ~			Only)	10	1/4				
Catego Invert Deteriora	10200	Rating	Sec.	- A						
Joint and Seams		3	MA	0000						
Corrosion / Cher				ood						
Cross-Section De		2								
Cracking			Po	or						
Headwall / Wing	gwall		N/							
Apron			NI	A						
Flared End Secti	on		N/	A						
Scour Protection			D/	me/G						

Watercourse and Crossing Location Indian River, Christie 5+							ID Numb 47	oer	Date Nov 8,202(
Barrel Sh	nape	Materi	al	No. Barı		En Upstrea		atments Downstre	eam	Dimension
Circular	X	Timber	Г	One	×	Projecting	Г	Projecting		Diameter
Box		Concrete		Two	Г	Mitered	Г	Mitered	Г	cm 20-20.5"
Pipe-Arch	Г	CMP	Г	Three	Г	Headwall	1	Headwall	X	Span
Elliptical	Г	PVC	X	Four	Г	Wingwalls	L.	Wingwalls	Г	cm
Other:		Other:	V 5	Other:		10	A	Other:	,	Rise
				other		otiler.	1	other		cm
N226 - 12 - 16 - 1825-127		Performar			5	6		ation	Ove	rall Rating
Other Sector Sector Sector Sector Sector		ockage > 1/ age 1/3 to					Norw	ny .	Good	X
		ushing-Rel					No	1.		~
Poor Char	nnel A	lignment					Kann N		Fair	
Previous a Local Scou		r Frequent	Over	topping		Yes		(Side of pendwall)	Poor	–
Embankm		iping				10	D	(pendwall)	FUUI	1
Channel D		117 (Constant)				N	ľo		Critic	al Г
Headcut	-						v			
		lope Instab age > 3/4 l					v		Unkn	own Г
		age > 3/41 age > 1/31		hrough	out		0			
Barrel		0 ,		0			IA		Perfo	ems
		nds Totally					U 10 U 2			
		asion / Cor g (Open Bo				1.47	0			
	atego	~ • •		ting	Ully					
Invert Det	-			Goud						
Joint and S	Seams			Good		1				
Corrosion	/ Chei	mical		Fair	(hut	5)				
Cross-Sect	ion De	eformation	_	Gest						
Cracking				Good						
Headwall ,	/ Wing	gwall		Good						
Apron				NIA						
Flared End	l Secti	on		NA						
Scour Prot	ectior	n		Good						

Watercourse and Crossing Location

Barrel Shape	Material	No. of Barrels	End Trea Upstream	atments Downstream	Dimension
Circular 🔀	Timber Г	One 🕅	Projecting	Projecting	Diameter
Box 🗆	Concrete 🕱	Two Г	Mitered	Mitered	cm 35-36
Pipe-Arch □	CMP Γ	Three Г	Headwall	Headwall 🕅	Span
Elliptical	PVC 🗆	Four Г	Wingwalls 🗆	Wingwalls	cm
Other <u>:</u>	Other:	Other <u>:</u>	Other:	Other:	Rise cm

Performance Problems

Debris/Veg. Blockage > 1/3 of	f Rise
Sediment Blockage 1/3 to 3/4	of Rise
Buoyancy or Crushing-Related	
Poor Channel Alignment	
Previous and/or Frequent Ov	ertopping
Local Scour	
Embankment Piping	
Channel Degradation	
Headcut	
Embankment Slope Instability	1
Sediment Blockage > 3/4 Rise	
Sediment Blockage > 1/3 Rise	Throughout
Barrel	
Submerged / Ends Totally Bu	
Aggressive Abrasion / Corros	
Exposed Footing (Open Botto	
Category R	ating
Invert Deterioration	6000
Joint and Seams	Good
Corrosion / Chemical	Yos (grate)
Cross-Section Deformation	1
Cracking	Good
Headwall / Wingwall	Good
Apron	NIA
Flared End Section	N/A
Scour Protection	Woke (Good

Location	Overall Ratin	Ig
No No	Good	×
No Ves	Fair	
No No	Poor	Г
No No	Critical	Г
No	Unknown	Г
No No Roah No	Performance Problems	Г
Nº/A		

Grate: minor Perst - Partially submerged - Overland flow erosion

must		itercourse	and	Crossin	g Loca	ntion		ID Numl 30	ber	Dat Wo V2	e 8 :37
Barrel S	hape	Mater	ial	No. Barr		Enc Upstrea		tments Downstro	eam	Dimen	sion
Circular	X	Timber	Г	One	\bowtie	Projecting	Г	Projecting		Diam	eter
Box		Concrete		Two	Г	Mitered	Γ	Mitered	×	10	cm
Pipe-Arch	nГ	CMP	Γ	Three	Г	Headwall	Г	Headwall	Г	Spa	
Elliptical	Г	PVC	X	Four	Г	Wingwalls		Wingwalls	Г		cm
Other:		Other:		Other:		Other:		Other:		Ris	е
				other		other.		omer	1		cm
51.0		Performa			i i			ation	Ove	rall Ratir	ng
		ckage > 1/ age 1/3 to					N		Good	ſ	X
		ushing-Re					N				.)
Poor Cha		•	arou i	unuro			No		Fair		
		r Frequent	t Over	topping			No				
Local Sco							No		Poor		Γ
Embankn							NS				
Channel I	Degrad	lation					No		Critic	al	Г
Headcut											
		lope Instat					No		Unkn	own	Γ
		age > 3/4 age > 1/3		hrough	at		No				
Barrel	DIUCK	age > 1/5	Rise I	mought	Jul		No			rmance	—
	ed / Er	nds Totally	Burie	d			No		Probl	ems	1
		asion / Cor			nical		No				
		g (Open Bo					No				
	ategoi		Rat								
Invert Det	eriorat	tion		Good							
Joint and	Seams			Good							
Corrosion	/ Cher	nical		Good							
Cross-Sec	tion De	formation		ke .							
Cracking				Good							
Headwall	/ Wing	wall		NA							
Apron				NIA							
Flared End	Sectio	n		NIA							
Scour Prot				Good							
SCOULETO	iection	12 12									

Notes: . Cable - crete scon protection & recessed ~ 70 m

	atercourse Riven	e and C	rossin	g Loca	ation		ID Numl 62	ber	Date Nov & 2021 10:53
Barrel Shape	Mater	ial	No. Bari		Enc Upstrea		atments Downstre	eam	Dimension
Circular 📈	Timber	Γ	One	\blacksquare	Projecting	Г	Projecting		Diameter
Box 🗆	Concrete		Two	Г	Mitered	Г	Mitered	Г	cm 11 - 75 \'
Pipe-Arch □	CMP	Г	Three	Г	Headwall	Г	Headwall	Г	Span
Elliptical	PVC	X	Four	Г	Wingwalls	Г	Wingwalls	Г	cm
Other:	Other: Corr	rughted	Other:		Other:				Rise
		- 0	othera		ouner	<u>5 - 12</u>	other		cm
	Performan			5			ation	Ove	rall Rating
Debris/Veg. Blo Sediment Block							10	Good	
Buoyancy or Cr						٨	10		
Poor Channel A							10	Fair	
Previous and/o	or Frequent	t Overt	opping				0		
Local Scour							0	Poor	Г
Embankment P Channel Degrad	177. I GTM						0	o	. –
Headcut	lation					1	Up	Critic	al Г
Embankment S	lope Instat	oility					No	Unkn	own E
Sediment Block	cage > 3/4	Rise					No	UIKI	OWN 1
Sediment Block	(age > 1/3	Rise Tł	nrough	out			No No	Perfo	ormance _
Barrel		n!	1				No	Probl	
Submerged / En Aggressive Abra				nical			Nu		
Exposed Footin							No		
Catego		Rati		0,					
Invert Deteriora	tion		Good						
Joint and Seams	6		Good						
Corrosion / Cher	mical		6000	X					
Cross-Section De	eformation		1						
Cracking			60.	l.					
Headwall / Wing	gwall		av.	NIA					
Apron			N	14					
Flared End Section	on		G.	1 AT					
Scour Protection	ı		00	00					

Ales - 12

Notes :

Recessed from piver ~ 50 m

	Watercourse and Crossing Location							ID Numl 29	ber	Date Nov 8 15:15
Barrel Sł	nape	Materi	ial	No. Barr		En Upstrea		tments Downstro	eam	Dimension
Circular	×	Timber	Γ	One	×	Projecting	Γ	Projecting		Diameter
Box		Concrete		Two	Г	Mitered	Г	Mitered	Г	cm 185 - 18-75 "
Pipe-Arch	۱۲	CMP	Г	Three	Г	Headwall	My.	Headwall	×	Span
Elliptical	Г	PVC	×	Four	Г	Wingwalls	Г	Wingwalls	Г	cm
Other:		Other:		Other:		Other:		Other:		Rise
										cm
D 1 + 40		Performar			8			ation	Over	all Rating
		ckage > 1/ age 1/3 to					No		Good	X
		ushing-Rel					No			
Poor Chai							No		Fair	
Previous Local Sco		r Frequent	t Overt	opping			No		Poor	-
Embankn		ining					No		P001	1
Channel I							No		Critica	
Headcut	0						No		Ontiot	
		lope Instab					No		Unkno	own 🗆
		age > 3/4		-			No		U.I.I.I	
	Block	age > 1/3	Rise T	hrougho	out		, v		Perfor	rmance –
Barrel	ad / Fr	nds Totally	Rurio	d			No		Proble	ems
-		asion / Cor			nical		No			
		g (Open Bo					NIA			
	ategoi		Rat							
Invert Det	eriorat	tion		6000	1					
Joint and S	Seams			Gara).					
Corrosion	/ Cher	nical		6 000	1					
Cross-Sect	tion De	formation		-	1					
Cracking				600	1					
Headwall,	/ Wing	wall		600	J					
Apron				NLA						
Flared End	Sectio	on		N/A	1					
Scour Prot				600	A					

櫻

APPENDIX H

Design Briefs for Storm Outfall Reconstruction

April 1st, 2022

Technical Memo for Design and Reconstruction of Storm Sewer Outfall 27

1 INTRODUCTION

As part of the City-Wide Flood Risk Assessment and Storm Outlet Review, the City of Pembroke has requested an assessment of the condition on 17 of the City's storm sewer outfalls, complete with an inventory of the findings. After conducting the outfall assessment, Aquafor Beech reported a total of 9 outfalls in poor condition and in need of repair. The following Technical Memo provides an overview of the existing conditions of Outfall 27 as well as the Detailed Design of the proposed outfall reconstruction.

The study area and location of Outfall 27 are shown in **Figure 1-1**. The storm sewer has a diameter of 300 mm and extends off of the corner joining Margaret Street to Moffat Street, outletting into the Muskrat River. Outfall 27 was identified to be in need of rehabilitation and was ranked as the highest priority site, of the total 17 sites that were assessed.



Figure 1-1: Location of Study Area for Storm Sewer Outfall 27

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

April 1st, 2022

2 EXISTING CONDITIONS

2.1 Overview

Outfall 27 has completely failed, with disconnected pipe segments and a concrete headwall strewn throughout the study area (Figure 2-1 and Figure 2-2). Under current conditions, stormwater discharges from a failed 300 mm cast iron pipe protruding from the valley slope (Figure 2-3) approximately 27 m from the edge of the Muskrat River. Water exiting the pipe appears to have created a large scarp that has a maximum width of ~13 m and is characterized by steep slopes exceeding 1.4H:1V in some places. Large amounts of debris, including concrete rubble, sewer pipe segments, and woody debris are found within the scarp. Some of the concrete rubble found within the site appears to have belonged to a manhole and/or drop structure that may have helped stormwater overcome the steep vertical gradient before discharging into the Muskrat River (Figure 2-4).

Figure 2-1: Debris within the Study Area

Figure 2-2: Failed Concrete Headwall and Pipe Segment

Figure 2-3: Remaining Pipe Protruding from the Slope

Figure 2-4: Possible Rubble from a Failed Manhole

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 2

2.2 **Topographic Survey**

A detailed topographic survey was completed from November 8th to November 19th in 2021 to record existing site conditions. Sufficient detail was captured to support the detailed design of the outfall reconstruction. Key parameters captured during the survey include:

- Longitudinal profile of the ground surface above and surrounding the storm sewer pipe, extending into ٠ the Muskrat River to capture streambed tie-in elevations;
- Any visible storm sewer infrastructure near the outlet (invert and obvert, exposed pipe, headwall, etc.);
- Upstream maintenance hole lid and pipe invert;
- Top and bottom of bank elevations approximately 5-10 m upstream and downstream of the storm sewer outfall; and
- Ground shots at the edge of erosion scars and within the eroded areas.

The survey was completed using a high-precision GPS instrument that was referenced to the NAD83 UTM Zone 18N horizontal coordinate system and the CGVD2013 vertical datum. A DEM derived from LiDAR data collected between 2019-2020 by Natural Resources Canada was used to complement the topographic survey data, allowing for elevations to be determined beyond the extents of the survey.

2.3 **Geotechnical Investigation**

A detailed geotechnical investigation was undertaken by GEMTEC within the study area on March 16th, 2022. The assessment was intended to define and characterize the subsurface soil conditions, inform the design of the proposed outfall reconstruction, and make recommendations regarding slope stabilization measures. One (1) borehole designated as 22-09 was advanced to a depth of 18.9 m below grade using a truck-mounted drill.

Soil samples were obtained at regular intervals in the overburden soils with a 51 mm diameter Standard Penetration Test split-spoon sample. This was done in accordance with ASTM Standard D-1586, which provides the penetration resistance (N-value) of the soils. Soil samples were examined in the field for type, texture and colour to classify each soil layer identified. The samples were sealed in air tight plastic bags and transferred to GEMTEC's laboratory for further examination and selection of appropriate samples for laboratory testing. In situ vane shear testing was carried out in the borehole to measure the undrained shear strength of the silty clay deposits. The results of the geotechnical investigation, along with a borehole location plan, are included in Appendix I.

Fill material was encountered at the surface of the borehole, extending to 1.8 m below surface grade. The fill was variable but was described as brown sand and gravel to silty sand with trace asphaltic concrete. The fill material was underlain by native deposits of sandy silt (11 m thick), silty clay (5.8 m thick), and glacial till composed of grey sand and silt with gravel (extending to the termination depth of the borehole). Based on soil sample appearance, the groundwater level was estimated to be at approximately 12.2 m below surface grade at the time of the investigation.

2.4 **Tree Inventory**

A comprehensive tree inventory was undertaken in the Outfall 27 study area in February, 2022 to identify trees that may potentially be removed or damaged to accommodate construction activities. A total of 9 trees were

inventoried in the study area, including at any potentially suitable access and staging areas. Sheet 6 in the detailed design drawings shows the locations of the surveyed trees within the Outfall 27 study area. **Table 2-1** provides a summary of the tree inventory results by species.

Tag #	Species Common Name	Species Botanical Name	Condition
831	White Ash	Fraxinus americana	Fair
832	White Spruce	Picea glauca	Fair-Good
NT1	Basswood	Tilia americana	Good
Bn1	Butternut	Juglans cinerea	Good
NT2	Manitoba Maple	Acer negundo	Fair-Good
833	Sugar Maple	Acer saccharum	Good, Fair(12)
NT3	White Spruce	Picea glauca	Good
NT4	Manitoba Maple	Acer negundo	Fair
NT5	Manitoba Maple	Acer negundo	Fair

Table 2-1: Tree Inventory Summary by Species

3 DESIGN FACTORS

At the outset of the design process, all opportunities, constraints, and considerations for the reconstruction of Outfall 27 were identified. This ensured that they were adequately considered during development of the detailed design. Constraints and considerations identified within the study area were as follows:

Disturbance to Terrestrial Vegetation – Some of the trees and other vegetation located within the study area may be harmed or removed during construction. However, space allowing, any mature trees that are required for removal to facilitate construction should be compensated with trees plantings at a 3:1 ratio, along with 5 shrubs planted for every 1 tree planted. If there is insufficient space near the study area to meet this replanting target, trees should be planted at a minimum 1:1 ratio, with 5 shrubs planted for every 1 tree planted. Tree species selection will be based on their nativity within the City of Pembroke, and seed mix composition will reflect typical vegetation found within Plant Hardiness Zone 4b (Natural Resources Canada, 2021).

Utilities – In addition to the storm sewer infrastructure identified during the background review of base mapping provided by the City, Aquafor has also completed an Ontario One Call utility locate request for the entire site identify all other utilities and any potential design conflicts.

Slope Stabilization – Slope erosion and failure should be restored by regrading to attain a natural long-term stable slope, followed by application of erosion protection.

Upstream and Downstream Tie-In Points – Care must be taken to ensure that there is a smooth transition into, and out of, the proposed outfall design, such that the stability of the slope and channel bank are not compromised.

Outlet Protection – The design should consider appropriate protection to prevent erosion and scouring damage to the pipe, structures and associated channel works.

4 DETAILED DESIGN

4.1 Principal Design Components

Detailed design drawings for Outfall 27 are provided under a separate cover. Due to the presence of an oversteepened slope (exceeding 1.4H:1V) between the upstream storm sewer and the Muskrat River, the design proposes to overcome most of the vertical gradient by installing three 1500 mm maintenance holes, each incorporating an internal 250 mm diam. PVC drop structure. The most upstream drop structure is specified to have a depth of ~5 m, while the two downstream drop structures are to be ~4 m deep.

PVC pipes having a diameter of 300 mm are to be used for connecting the maintenance holes and conveying stormwater to the river. The storm sewer outlet is to be located above water surface elevations that occur during frequent flow events within the Muskrat River. A short runoff channel consisting of 750 mm deep angular stone is to be constructed at the pipe outlet to prevent scouring near the confluence with the river. A concrete headwall is specified to mitigate erosion near the outlet pipe and prevent scouring of the slope, and to allow for a stable confluence of the outfall channel with the Muskrat River.

Specific elements of the design and construction include removing existing debris within the scarp and the failed 300 mm cast iron pipe protruding from the slope. The existing guard rail is to be removed prior to construction and relocated. The proposed maintenance holes and sewer pipes are to be backfilled and vegetated with native riparian seed mix, shrubs, and trees, which are intended to provide additional slope stability and resist erosion from overland flow during extreme storm events.

The reconstruction of Outfall 27 is to be co-ordinated with downstream slope restoration works (design and tender to be completed by others). Co-ordination between these projects will ensure a smooth transition between reconstructed slopes, and has the potential to increase construction efficiency (e.g., by undertaking construction works during the same timeframe).

4.2 Wildlife Mitigation Measures

4.2.1 Breeding Birds

Tree removals should occur outside of the bird nesting window (generally April 1st to August 31st) to ensure that active nests of protected species are not harmed or destroyed and that the project is compliant with the *Migratory Birds Convention Act*. Individual trees or areas of low-complexity habitat could potentially be removed during the nesting window following an inspection to confirm the absence of active nesting in the area. However, this method is not recommended for complex habitats (e.g., mature woodland) due to the low detectability of nests in such areas, and is further not permitted if a restriction is placed on tree removal due to SAR bat habitat.

4.2.2 Bat Maternity Roosts

The active window for Ontario's SAR bats extends from April 1st to September 30th. The study area is inclusive of potential SAR bat habitat, and as such, tree removal is prohibited during this period.

4.2.3 In-Water Works Timing Windows and Fisheries Act

Discussions with MNRF (personal communication, March 15, 2022) confirmed that the Muskrat River provides habitat to both spring and fall spawning species. As a major watercourse, the Muskrat River contains fish at any time during any given year. Thus, no in-water works may occur between October 1 to July 15 of any given year to avoid works within the spring and fall spawning windows for the MNR Southern Region (March 15 - July 15 and October 1 - May 21, respectively).

4.2.4 DFO Self-assessment

The federal *Fisheries Act* requires that projects avoid causing the death of fish and the harmful alteration, disruption or destruction of fish habitat unless authorized by the Minister of Fisheries and Oceans Canada (DFO). This applies to work being conducted in or near waterbodies that support fish at any time during any given year or are connected to waterbodies that support fish at any time during any given year. As noted above, the study area does contain fish at any time during any given year. Therefore, the *Fisheries Act* applies to works conducted in or near water at the site.

As the proposed works include minor regrading and rock placement within the high-water mark of the channel, Aquafor will undertake a request for regulatory review under the federal *Fisheries Act*.

4.3 Vegetation Removals and Restoration

A detailed restoration plan is shown on Sheet 7 of the design drawings. As soon as possible following construction, all disturbed areas should be revegetated through application of an annual cover crop and native herbaceous seed mix in areas of disturbance. Native seed mix should include wildflowers (preferably including milkweed species) to promote wildlife habitat. Terraseeding is the preferred application to hydroseeding. The recommended annual cover crop consists of Canada Wild Rye (*Elymus canadensis*) (40%) and Annual Oats (*Avena sativa*) (60%) applied at a rate of 33 kg/ha. after the risk of frost (i.e., after March 31 and before October 31); if applied during the time of frost risk, the cover crop should be 100% Annual Oats at a rate of 33kg/ha.

In addition, interplanting with native trees and shrubs is recommended within the coastal floodplain where appropriate. Restoration within disturbed areas should be in keeping with existing communities, and interplanting should utilize vegetation appropriate to the target community. Such interplanting will aid in stabilizing the banks and will also enhance habitat for wildlife and aquatic species.

All species selected should be native, suitable to the site conditions, and reflect the diversity of species commonly found in local natural areas. Based on native species within Pembroke and the site's location within Plant Hardiness Zone 4b, suggested species and sizes are listed in **Table 4-1**, **Table 4-2**, and **Table 4-3**.

April 1st, 2022

Table 4-1: Native Seed Mixes							
Scientific Name	Common Name	% by Weight					
Nurse Crop Mix (Application Rate: 33 kg/ha)							
Elymus canadensis	Canada Wild Rye	40%					
Avena sativa	Annual Oats	60%					
Riparian Mix (Application Rate: 25	kg/ha)						
Anemonastrum canadensis	Canada Anemone	1%					
Apocynum cannibinum	Indian-hemp Dogbane	5%					
Asclepias incarnata ssp. incarnata	Swamp Milkweed	5%					
Bidens cernua	Nodding Beggarticks	2%					
Bidens frondose	Devil's Beggarticks	2%					
Carex granularis	Meadow/Open Field Sedge	20%					
Clematis viginiana	Virgin's Bower	4%					
Elymus virginicus var. virginicus	Virginia Wild Rye	10%					
Euthamia graminifolia	Grass-leaved Goldenrod	5%					
Juncus dudleyi	Dudley's Rush	10%					
Poa palustris	Fowl Bluegrass	25%					
Solidago canadensis	Canada Goldenrod	4%					
Symphyotrichum novae-angliae	New England Aster	1%					
Symphyotrichum puniceum	Purple Stemmed Aster	1%					
Verbena hastata	Blue Vervain	5%					

Table 4-2: Native Tree Plantings

Scientific Name	Common Name	Amount	Size
Acer rubrum	Red Maple	3	5 gal. potted
Acer saccharum	Sugar Maple	3	5 gal. potted
Picea glauca	White Spruce	2	5 gal. potted
Thuja occidentalis	Eastern White Cedar	2	5 gal. potted
Tilia americana	Basswood	2	5 gal. potted

Table 4-3: Native Shrub Plantings

Scientific Name	Common Name	Amount	Size
Amelanchier arborea	Downy Juneberry	8	2 gal. potted
Cornus alternifolia	Alternate-leaved Dogwood	8	2 gal. potted
Cornus racemosa	Grey dogwood	8	2 gal. potted
Prunus virginiana	Chokecherry	8	2 gal. potted
Ribes hirtellum	Smooth Gooseberry	7	2 gal. potted
Rubus odoratus	Flowering Raspberry	7	2 gal. potted
Salix petiolaris	Slender Willow	7	2 gal. potted
Sambucus racemosa	Red-berried Elder	7	2 gal. potted

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089

Branch Office:

55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

4.3.1 Removal Timing Window and Protection Measures

It will be necessary to remove some trees and other vegetation to facilitate the proposed works. Of the 9 live trees identified during the assessment (detailed previously in **Table 2-1**), 4 have been identified for removal. Trees identified for removal are listed in **Table 4-4** below and are shown on Sheet 6 of the detailed design drawings. Tree removals on the site should take place outside of the typical bird nesting and bat maternity roost season (collectively April 1 to September 30).

Construction activities can have adverse effects on nearby trees that are to remain in place and should not be disturbed by the proposed works. Tree protections measures, consisting of page wire hoarding specified on Sheet 5 of the detailed design drawings, should be followed in order to mitigate against potential damages.

Table 4-4. Trees identified for Kenioval						
Tag #	Species Common Name	ies Common Name Species Botanical Name				
831	White Ash	Fraxinus americana	Fair			
NT1	Basswood	Tilia americana	Good			
NT4	Manitoba Maple	Acer negundo	Fair			
NT5	Manitoba Maple	Acer negundo	Fair			

Table 4-4: Trees Identified for Removal

5 EASEMENT REQUIREMENTS

Aquafor was provided the property fabric by the City of Pembroke on March 7, 2022. As shown on Sheet 6 of the detailed design drawings, access routes and the staging and storage area are proposed within private property at 393 Moffat Street, for which an easement would be required. The reconstruction of Outfall 27 should be coordinated with downstream slope restoration works during the easement procurement process, as it may be possible to use the same easement on 393 Maffat Street for both projects. In all cases, an OLS should be retained to confirm property parcels and associated limits.

6 PERMITS AND APPROVALS

6.1 MNRF Fish Collection Permit

As de-watering will be required to accommodate construction, a fish rescue must be conducted. It will therefore be necessary to obtain a fish collection permit from the MNRF prior to construction. In addition, the dewatering and fish rescue must be conducted in accordance with MNRF timing windows to reduce harm to aquatic species, with no in-water works occurring between October 1 to July 15 (as discussed in **Section 4.2.3**). In the event that the work area becomes inundated following a significant rainfall event, fish rescues will be required prior to continuing instream works.

6.2 Provincial Species at Risk – MECP 17(2) (b/c) Species at Risk Permit

Prior to implementation, the study area should be subject to a Species at Risk (SAR) screening to identify any potential conflicts and ensure compliance with applicable legislation. Screening should be completed by consulting background information and agencies (MECP) to identify potential species associations, and assessing

the potential for those species to occur in the study area based on their habitat requirements as compared to the habitat present on site. Mitigation measures to prevent or minimize impacts to species should be developed. If endangered or threatened species will potentially be impacted by the project, an Information Gathering Form (IGF) should be prepared and submitted to the MECP so that they may review the project and advise on requirements under the *Endangered Species Act*. Such requirements may include: implementation of additional mitigation measures as specified by MECP; registering the project via a Notice of Activity under a regulatory exemption; or preparation of an Overall Benefit Permit (OBP) package to address impacts to protected species or habitat. Please note that the review period for an OBP, if such is required, is currently estimated at nine months to one year.

6.3 Department of Fisheries and Oceans Request for Review

As noted in **Section 4.2.4**, the detailed design will be submitted to DFO for review under the federal *Fisheries Act*.

7 CONSTRUCTION REQUIREMENTS

Construction Supervision – To ensure that the objectives of the outfall rehabilitation design are realized, it is important that someone with experience in channel design and restoration be part of the construction supervision (i.e., a qualified professional or representative of Aquafor Beech Ltd.). The supervision will enable construction issues to be addressed quickly and appropriately and ensure that important design details such as those listed below are implemented:

- Implementation of functional erosion and sediment control measures, including dewatering and pumping procedures;
- Removal of existing vegetation within, and protection of vegetation in close proximity to, the works area and access route;
- Confirmation of stone size gradation;
- Construction of an appropriate transition at the upstream and downstream tie-in points; and
- Restoration planting of native shrubs and trees, and Terraseeding of native seed mix.

Erosion and Sediment Control Measures – Erosion protection shall be used on regraded banks to provide erosion protection prior to the establishment of a vegetative cover.

Inspection of ESC measures should be completed regularly during the construction process to ensure that erosion and sediment control measures are functioning as intended and to address any immediate concerns. Similarly, monitoring of erosion control works should be completed following any flooding event to ensure that erosion control blankets and plantings are not compromised as a result of the event. The inspection and monitoring should be completed by an engineer, environmental inspector, or representative of Aquafor Beech Ltd.

Timing – Construction timing is restricted for fisheries protection. The Muskrat River provides habitat to both spring and fall spawning species. As such, no in-water works may occur between October 1 to July 15 of any given year to respect spring and fall spawning species for the MNR Southern Region. All tree removals on the site must take place outside of the period from April 1 to September 30, which is inclusive of the typical bird nesting season (April 1 to August 31) and the typical maternity roost season (April 1 - September 30).

April 1st, 2022

Fish Removal – An initial fish rescue will be required once the in-water work area has been isolated; the fish rescue will be completed prior to dewatering the work area. Subsequent fish rescues will be required if the coffer dam isolating the work area is overtopped by high flows in the river. The contractor will be responsible for coordinating with the qualified aquatic biologist for fish rescues.

Construction Methodology – The channel bank and bed works must be undertaken in the dry. Dry working conditions will be created by blocking the perimeter of the work zone with coffer dams and routing the water around the work zone (dam and flume techniques). Additional precautions and procedures, specified in the detailed drawings, include:

- All practical measures will be implemented to maintain the work zone in good condition;
- Utilities will be located and protected;
- Equipment refuelling will take place in the designated staging area, a minimum of 30 m from the watercourse; and
- All erosion and sediment control measures will be maintained in good working order.

Site Access – Access routes and the staging and storage area are shown on Sheet 6 of the drawing set. Access for construction is proposed from Moffat Street, passing through private property at 393 Moffat Street. The staging and storage area is also proposed to be located on 393 Moffat Street. Any changes to the access routes or staging area locations must be approved by the City and the field engineer.

Vegetation – To minimize the rate of erosion, it is desirable to establish vegetation quickly where it has been specified. Potted shrubs, potted trees, and a native seed mix (to be applied by Terraseeding) will be used to restore the site. Onsite consideration should be given to the season and prevailing light conditions for planting. If construction occurs after October, plantings should be completed as soon as possible in the following spring season.

8 CONSTRUCTION COST ESTIMATION

Preliminary construction costs have been estimated based on a schedule of quantities from the detailed design presented here. The construction cost estimate is \$647,520 which includes a 20% contingency but is exclusive of HST. The detailed schedule of quantities showing the breakdown of costs is provided on the following page in **Table 8-1**.

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Table 8-1: Construction Cost Estimate for Reconstruction of Outfall 27

	PEMBROKE OUILEIS - OUILET # 2'	7			
	City of Pembroke				
Item	Description	Qty	Unit	Unit Price	Extended Price (Excl HST)
	Section "A" – Site Preparation & Remov	vals			HS 1)
1	Bonds and Insurance	1	LS	\$25,000	\$25,000
2	Field Office	1	LS	\$3,000	\$3,000
3	Construction Layout, Utility & Locates	1	LS	\$10,000	\$10,000
4	Mobilization & Demobilization	1	LS	\$35,000	\$35,000
5	Access Route, Mud Mat & Staging Areas	1	LS	\$120,000	\$120,000
6	Clearing, Grubbing, and Vegetation Removal	1	LS	\$25,000	\$25,000
8	Supply, Install & Remove Temporary Construction Fence	50	m	\$15	\$750
9	Stream Control, Bypass Pumping & Dewatering	1	LS	\$35,000	\$35,000
10	MNRF Fish Collection Permit and Fish Rescues	1	LS	\$5,000	\$5,000
11	Removal & Disposal of Concrete Headwall and Excess Pipe	1	LS	\$10,000	\$10,000
	Subtotal Section A (Excl of HST)				\$268,750
	Section "B" – Sewer Works, Channel Works and	Restor	ration		
12	Excavate, Earthwork, Grading & Disposal of Materials	1	LS	\$60,000	\$60,000
13	Supply & Placement of Angular Channel Substrate	25	tonne	\$200	\$5,000
14	Supply & Placement of Concrete Headwall	1	ea	\$15,000	\$15,000
14	Supply & Placement of 300mm dia. PVC pipe including joint restraints	30	m	\$2,500	\$75,000
15	Supply & Placement of 1500mm dia. Maintenance Hole including 300mm dia. Drop pipe and Watertight Frame Cover	3	ea	\$25,000	\$75,000
16	Supply & Placement of Erosion Control Blanket - Coir Mat	800	m ²	\$8	\$6,400
17	Supply & Placement of Topsoil for Restoration (300mm for terraseed area & 150mm for Sod)	240	m³	\$50	\$12,000
18	Supply & Application of Terraseed Mixture	800	m ²	\$8	\$6,400
19	Supply & Application of Sod	35	m ²	\$10	\$350
20	Supply & Planting of Trees (5 gal potted @ min 2.5m spacing)				
	ii) Red Maple	3	ea	\$250	\$750
	ii) Sugar Mapel	3	ea	\$250	\$750
	iii) White Spruce	2	ea	\$250	\$500
	iv) Eastern White Cedar	2	ea	\$250	\$500
	v) Basswood	2	ea	\$250	\$500
21	Supply & Planting of Shrubs (2 gal potted @ 1m spacing)				
	i) Grey Dogwood	8	ea	\$45	\$360
	ii) Chokecherry	8	ea	\$45	\$360
	iii) Alternate Leaved Dogwood	8	ea	\$45	\$360
	iv) Downy juneberry	8	ea	\$45	\$360
	v) Smooth Gooseberry	7	ea	\$45	\$315
	vi) Flowering Raspberry	7	ea	\$45	\$315
	vii) Slender Willow	7	ea	\$45	\$315
	iix) Red-berried Elder	7	ea	\$45	\$315
	Subtotal Section B (Excl of HST)				\$260,850

	Section "C" – Provisional				
23	Migratory Nesting Bird Survey	1	LS	\$5,000	\$5,000
24	Retain Certified Arborist	1	LS	\$5,000	\$5,000
	Subtotal Section C (Excl of HST)				\$10,000
	Section "D" – Contingency				
25	Contingency (20%)	1	LS	\$107,920	\$107,920
	Subtotal Section D (Excl of HST)				\$107,920
	Section "A" - Site Preparation & Removals				\$268,750
	Section "B" - Sewer Works, Channel Works and Restoration				\$260,850
	Section "C" – Provisional				\$10,000
	Section "D" – Contingency				\$107,920
	Sub Total (Exc of taxes)				\$647,520
	HST @ 13%				\$84,178
	Total Bid Price (Incl of taxes)				\$731,698
	Outlet # 27 Engineering Estimate (Inc. Contingency, Exc. H	ST)			\$647,520

9 **REFERENCES**

Natural Resources Canada (2021). Plant hardiness of Canada. Retrieved from http://planthardiness.gc.ca/

Department of Fisheries and Oceans. (2021). Projects near water. Retrieved from Fisheries and Oceans Canada: http://www.dfo-mpo.gc.ca/pnw-ppe/index-eng.html

10 SIGNATURES

This project is being completed with input from the following consulting staff:

Dave Maunder – Project Manager Robert Amos – Water Resources Lead Golmar Golmohammadi – Water Resources Engineer Gabriel Dubé – Water Resources Specialist Yun Xia – Water Resources Specialist Palka Sharma – CAD Technician Julie Scott – Terrestrial Ecologist Jakub Ripley – GIS Specialist Darcy LaFramboise – Certified Arborist Graham Eby – Aquatic Biologist

Upon your review, should you have any questions or comments, please do not hesitate to contact the undersigned.

April 1st, 2022

claved Maunder

Dave Maunder, M.Sc., P.Eng Project Manager Aquafor Beech Limited

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 13

April 1st, 2022

Technical Memo for Design and Reconstruction of Storm Sewer Outfall 31

1 INTRODUCTION

As part of the City-Wide Flood Risk Assessment and Storm Outlet Review, the City of Pembroke has requested an assessment of the condition on 17 of the City's storm sewer outfalls, complete with an inventory of the findings. After conducting the outfall assessment, Aquafor Beech reported a total of 9 outfalls in poor condition and in need of repair. The following Technical Memo provides an overview of the existing conditions of Outfall 31 as well as the Detailed Design of the proposed outfall reconstruction.

Outfall 31 extends off of Moffat Street, outletting into the Indian River (**Figure 1-1**). The storm sewer pipe has a diameter of 300 mm and is located approximately 140 m upstream of the confluence of Indian River with Muskrat River. Outfall 31 was identified to be in need of rehabilitation and was ranked as the 5th highest priority site, of the total 17 sites that were assessed.

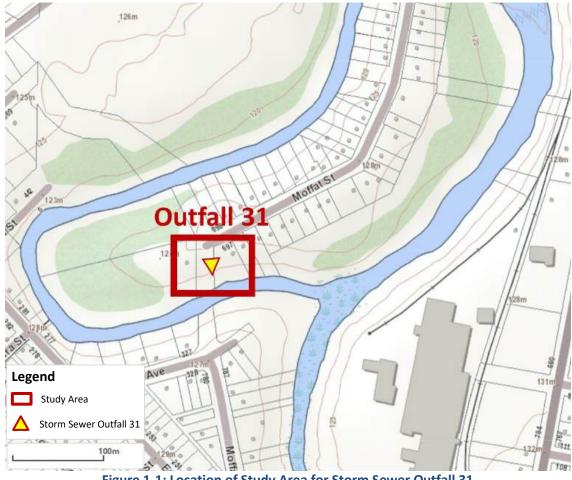


Figure 1-1: Location of Study Area for Storm Sewer Outfall 31

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

April 1st, 2022

2 EXISTING CONDITIONS

2.1 Overview

As can be seen in **Figure 2-1** and **Figure 2-2**, the existing outfall is composed of a 300 mm PVC pipe that discharges into a 525 mm CSP half-pipe extending past the bottom of bank and into the Indian River. The CSP is in poor condition, as one section downstream has been undermined, and another has become entirely detached (**Figure 2-3** and **Figure 2-4**). The CSP also displays evidence of rust corrosion, and bank erosion was noted beneath the pipe.

Figure 2-1: PVC Pipe Outlet into the CSV Half-Pipe

Figure 2-2: CSV Half-Pipe

Figure 2-3: CSV Half-Pipe at the Edge of the Indian River (Looking Downstream)

Figure 2-4: CSV Half-Pipe at the Edge of the Indian River (Looking Upstream)

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089

Branch Office: 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 2

2.2 Topographic Survey

A detailed topographic survey was completed from November 8th to November 19th in 2021 to record existing site conditions. Sufficient detail was captured to support the detailed design of the outfall reconstruction. Key parameters captured during the survey include:

- Longitudinal profile of the ground surface along the PVC storm sewer pipe and CSP half-pipe, extending into the Indian River to capture streambed tie-in elevations;
- Any visible storm sewer infrastructure near the outlet (invert and obvert, CSP half-pipe, headwall, etc.);
- Upstream maintenance hole lid and pipe invert;
- Top and bottom of bank elevations approximately 5-10 m upstream and downstream of the storm sewer outfall; and
- Ground shots at the edge of erosion scars and within the eroded areas.

The survey was completed using a high-precision GPS instrument that was referenced to the NAD83 UTM Zone 18N horizontal coordinate system and the CGVD2013 vertical datum. A DEM derived from LiDAR data collected between 2019-2020 by Natural Resources Canada was used to complement the topographic survey data, allowing for elevations to be determined beyond the extents of the survey.

2.3 Geotechnical Investigation

A detailed geotechnical investigation was undertaken by GEMTEC within the study area on March 15th, 2022. The assessment was intended to define and characterize the subsurface soil conditions, inform the design of the proposed outfall reconstruction, and make recommendations regarding slope stabilization measures. One (1) borehole designated as 22-08 was advanced to a depth of 9.8 m below grade using a truck-mounted drill.

Soil samples were obtained at regular intervals in the overburden soils with a 51 mm diameter Standard Penetration Test split-spoon sample. This was done in accordance with ASTM Standard D-1586, which provides the penetration resistance (N-value) of the soils. Soil samples were examined in the field for type, texture and colour to classify each soil layer identified. The samples were sealed in air tight plastic bags and transferred to GEMTEC's laboratory for further examination and selection of appropriate samples for laboratory testing. In situ vane shear testing was carried out in the borehole to measure the undrained shear strength of the silty clay deposits. The results of the geotechnical investigation, along with a borehole location plan, are included in **Appendix I.**

A 40 mm layer of asphaltic concrete was encountered at the surface, followed by a 200 mm layer of road base consisting of a brown crushed sand with gravel and some silt. Beneath the road base, a 1.9 m thick layer of fill was encountered, consisting of brown silty sand with trace clay. The fill material was underlain by native deposits of sand with some silt (2.8 m thick) and silty clay (extending to the termination depth of the borehole). Based on soil sample appearance, the groundwater level was estimated to be at approximately 4.3 m below surface grade at the time of the investigation.

2.4 Tree Inventory

A comprehensive tree inventory was undertaken in the Outfall 31 study area in February, 2022 to identify trees that may potentially be removed or damaged to accommodate construction activities. A total of 12 trees were inventoried in the study area, including at any potentially suitable access and staging areas. Sheet 5 in the

detailed design drawings shows the locations of the surveyed trees within the Outfall 31 study area. Table 2-1 provides a summary of the tree inventory results by species.

Tag # Species Common Name		Species Botanical Name	Condition
NT1	Eastern White Cedar	Thuja occidentalis	Fair-Good
NT2	Eastern White Cedar	Thuja occidentalis	Fair-Good
NT3	Eastern White Cedar	Thuja occidentalis	Fair-Good
NT4	Siberian Elm	Ulmus pumila	Good
NT5	Eastern White Cedar	Thuja occidentalis	Fair-Good
NT6	Eastern White Cedar	Thuja occidentalis	Fair-Good
NT7	Eastern White Cedar	Thuja occidentalis	Fair-Good
NT8	Eastern White Cedar	Thuja occidentalis	Fair-Good
NT9	Eastern White Cedar	Thuja occidentalis	Fair-Good
NT10	Eastern White Cedar	Thuja occidentalis	Fair-Good
NT11	Eastern White Cedar	Thuja occidentalis	Fair-Good
NT12	White Ash	Fraxinus americana	Dead

Table 2.4. Tree Investory Company by Creater

3 **DESIGN FACTORS**

At the outset of the design process, all opportunities, constraints, and considerations for the reconstruction of Outfall 31 were identified. This ensured that they were adequately considered during development of the detailed design. Constraints and considerations identified within the study area were as follows:

Disturbance to Terrestrial Vegetation – Some of the trees and other vegetation located within the study area may be harmed or removed during construction. However, space allowing, any mature trees that are required for removal to facilitate construction will be compensated with trees plantings at a 3:1 ratio, along with 5 shrubs planted for every 1 tree planted. If there is insufficient space near the study area to meet this replanting target, trees will be planted at a minimum 1:1 ratio, with 5 shrubs planted for every 1 tree planted. Tree species selection will be based on their nativity within the City of Pembroke, and seed mix composition will reflect typical vegetation found within Plant Hardiness Zone 4b (Natural Resources Canada, 2021).

Utilities – In addition to the storm sewer infrastructure identified during the background review of base mapping provided by the City, Aquafor has also completed an Ontario One Call utility locate request for the entire site identify all other utilities and any potential design conflicts.

Slope Stabilization – Slope erosion should be restored by regrading to attain a natural long-term stable slope, followed by application of erosion protection.

Upstream and Downstream Tie-In Points – Care must be taken to ensure that there is a smooth transition into, and out of, the proposed outfall design, such that the stability of the slope and channel bank are not compromised.

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089

Outlet Protection – The design should consider appropriate protection to prevent erosion and scouring damage to the pipe, structures and associated channel works.

4 DETAILED DESIGN

4.1 Principal Design Components

Detailed design drawings for Outfall 31 are provided under a separate cover. Due to the presence of an existing steep slope (exceeding 2.2H:1V) between the PVC pipe outlet and the Indian River, the design proposes to overcome much of the vertical gradient by installing a 1500 mm maintenance hole incorporating an internal 2.5 m deep (250 mm diam.) PVC drop-structure that connects to a 300 mm PVC sewer pipe. Downstream of the proposed maintenance hole, the pipe outlet is to be located above water surface elevations that occur during frequent flow events within the Indian River. Flows exiting the sewer pipe are to be conveyed to the Indian River via a 12 m long outfall channel constructed with 750 mm deep angular stone. A concrete headwall is specified to mitigate erosion near the outlet pipe and prevent scouring of the slope, and to allow for a stable confluence of the outfall channel with the Indian River.

Other elements of the design and reconstruction include removing the existing CSP half pipe and 4 m of the existing PVC pipe. The proposed maintenance hole and sewer pipe are to be backfilled and vegetated with native upland seed mix and shrubs, which are intended to provide additional slope stability and resist erosion from overland flow during extreme storm events. A vegetated buttress having a total length of ~6 m is proposed in order to provide bank protection near the confluence of the outfall channel with the Indian River.

As an additional measure to deter failure of the storm sewer under potential bank erosion, it is proposed to install the 300 mm storm sewer with Class 150 PVC (DR-18) pipe, complete with mechanical joint restraints.

4.2 Wildlife Mitigation Measures

4.2.1 Breeding Birds

No tree removals are anticipated for the restoration of Outfall 31. However, if any tree removals become necessary, they should occur outside of the bird nesting window (generally April 1st to August 31st) to ensure that active nests of protected species are not harmed or destroyed and that the project is compliant with the *Migratory Birds Convention Act*. Individual trees or areas of low-complexity habitat could potentially be removed during the nesting window following an inspection to confirm the absence of active nesting in the area. However, this method is not recommended for complex habitats (e.g., mature woodland) due to the low detectability of nests in such areas, and is further not permitted if a restriction is placed on tree removal due to SAR bat habitat.

4.2.2 Bat Maternity Roosts

The active window for Ontario's SAR bats extends from April 1st to September 30th. The study area is inclusive of potential SAR bat habitat, and as such, tree removal is prohibited during this period. We note that for this site in particular, no tree removals are required and in turn this window restriction will not apply.

4.2.3 In-Water Works Timing Windows and Fisheries Act

Discussions with MNRF (personal communication, March 15, 2022) confirmed that the Indian River provides habitat to both spring and fall spawning species. As a major watercourse, the Indian River contains fish at any time during any given year. Thus, no in-water works may occur between October 1 to July 15 of any given year to avoid works within the spring and fall spawning windows for the MNR Southern Region (March 15 - July 15 and October 1 - May 21, respectively).

4.2.4 DFO Self-assessment

The federal *Fisheries Act* requires that projects avoid causing the death of fish and the harmful alteration, disruption or destruction of fish habitat unless authorized by the Minister of Fisheries and Oceans Canada (DFO). This applies to work being conducted in or near waterbodies that support fish at any time during any given year or are connected to waterbodies that support fish at any time during any given year. As noted above, the study area does contain fish at any time during any given year. Therefore, the *Fisheries Act* applies to works conducted in or near water at the site.

As the proposed works include minor regrading and rock placement within the high-water mark of the channel, Aquafor will undertake a request for regulatory review under the federal *Fisheries Act*.

4.3 Vegetation Removals and Restoration

A detailed restoration plan is shown on Sheet 6 of the design drawings. As soon as possible following construction, all disturbed areas should be revegetated through application of an annual cover crop and native herbaceous seed mix in areas of disturbance. Native seed mix should include wildflowers (preferably including milkweed species) to promote wildlife habitat. Terraseeding is the preferred application to hydroseeding. The recommended annual cover crop consists of Canada Wild Rye (*Elymus canadensis*) (40%) and Annual Oats (*Avena sativa*) (60%) applied at a rate of 33 kg/ha. after the risk of frost (i.e., after March 31 and before October 31); if applied during the time of frost risk, the cover crop should be 100% Annual Oats at a rate of 33kg/ha.

In addition, interplanting with native shrubs is recommended within the coastal floodplain where appropriate. Restoration within disturbed areas should be in keeping with existing communities, and interplanting should utilize vegetation appropriate to the target community. Such interplanting will aid in stabilizing the banks and will also enhance habitat for wildlife and aquatic species.

All species selected should be native, suitable to the site conditions, and reflect the diversity of species commonly found in local natural areas. Based on native shrubs within Pembroke and the site's location within Plant Hardiness Zone 4b, suggested species and sizes are listed in **Table 4-1** and **Table 4-2**.

April 1st, 2022

	Table 4-1: Native Seed Mixes	
Scientific Name	Common Name	% by Weight
Nurse Crop Mix (Application Rate:		
Elymus canadensis	Canada Wild Rye	40%
Avena sativa	Annual Oats	60%
Upland Mix (Application Rate: 25 k	g/ha)	
Asclepias syriaca	Common Milkweed	5%
Clematis virginiana	Virgin's Bower	2%
Fragaria virginiana	Wild Strawberry	3%
Monarda fistulosa	Wild Bergamot	5%
Panicum acuminatum (P.implicatum; P. lanuginosum)	Hairy Panic Grass	30%
Rudbeckia hirta	Black-eye Susan	15%
Solidago canadensis	Canada Goldenrod	8%
Sporobolus cryptandrus	Sand Dropseed	30%
Symphyotrichum cordifolium	Heart-leaved Aster	1%
Riparian Mix (Application Rate: 25	kg/ha)	
Anemonastrum canadensis	Canada Anemone	1%
Apocynum cannibinum	Indian-hemp Dogbane	5%
Asclepias incarnata ssp. incarnata	Swamp Milkweed	5%
Bidens cernua	Nodding Beggarticks	2%
Bidens frondose	Devil's Beggarticks	2%
Carex granularis	Meadow/Open Field Sedge	20%
Clematis viginiana	Virgin's Bower	4%
Elymus virginicus var. virginicus	Virginia Wild Rye	10%
Euthamia graminifolia	Grass-leaved Goldenrod	5%
Juncus dudleyi	Dudley's Rush	10%
Poa palustris	Fowl Bluegrass	25%
Solidago canadensis	Canada Goldenrod	4%
Symphyotrichum novae-angliae	New England Aster	1%
Symphyotrichum puniceum	Purple Stemmed Aster	1%
Verbena hastata	Blue Vervain	5%

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

April 1st, 2022

Scientific Name	Common Name	Amount	Size
Restoration Plantings			
Cornus rugosa	Round-leaved Dogwood	10	2 gal. potted
Prunus virginiana	Chokecherry	10	2 gal. potted
Ribes hirtellum	Smooth Gooseberry	10	2 gal. potted
Rubus ideaus	Wild Red Raspberry	10	2 gal. potted
Spirea alba	Narrow-leaved Meadowsweet	10	2 gal. potted
Vegetated Buttress Plantings			
Cornus sericea	Red-osier Dogwood	5	2 gal. potted
Cornus rugosa	Round-leaved Dogwood	5	2 gal. potted
Salix petiolaris	Slender Willow	5	2 gal. potted
Spirea alba	Narrow-leaved Meadowsweet	5	2 gal. potted
Viburnum lentago	Nannyberry	4	2 gal. potted

Table 4-2: Native Shrub Plantings

No tree removals are planned during construction. However, shrub plantings at 1 m spacing are proposed to restore and stabilize portions of the slope that will be disturbed. A denser planting of shrubs at 0.5 m spacing is proposed overtop the vegetated buttress along the river bank, providing additional erosion protection to the bank.

4.3.1 Removal Timing Window and Protection Measures

No tree removals are planned during construction, and in turn no timing window restrictions will apply.

Construction activities can have adverse effects on nearby trees that are to remain in place and should not be disturbed by the proposed works. Tree protections measures, consisting of page wire hoarding specified on Sheet 4 of the detailed design drawings, should be followed in order to mitigate against potential damages.

5 EASEMENT REQUIREMENTS

Aquafor was provided the property fabric by the City of Pembroke on March 7, 2022. In all cases, an OLS should be retained to confirm property parcels and associated limits. In some cases, it may be necessary to require temporary or permanent easements.

6 PERMITS AND APPROVALS

6.1 MNRF Fish Collection Permit

As de-watering will be required to accommodate construction, a fish rescue must be conducted. It will therefore be necessary to obtain a fish collection permit from the MNRF prior to construction. In addition, the dewatering and fish rescue must be conducted in accordance with MNRF timing windows to reduce harm to aquatic species, with no in-water works occurring between October 1 to July 15 (as discussed in **Section 4.2.3**). In the event that the work area becomes inundated following a significant rainfall event, fish rescues will be required prior to continuing instream works.

6.2 Provincial Species at Risk – MECP 17(2) (b/c) Species at Risk Permit

Prior to implementation, the study area should be subject to a Species at Risk (SAR) screening to identify any potential conflicts and ensure compliance with applicable legislation. Screening should be completed by consulting background information and agencies (MECP) to identify potential species associations, and assessing the potential for those species to occur in the study area based on their habitat requirements as compared to the habitat present on site. Mitigation measures to prevent or minimize impacts to species should be developed. If endangered or threatened species will potentially be impacted by the project, an Information Gathering Form (IGF) should be prepared and submitted to the MECP so that they may review the project and advise on requirements under the *Endangered Species Act*. Such requirements may include: implementation of additional mitigation measures as specified by MECP; registering the project via a Notice of Activity under a regulatory exemption; or preparation of an Overall Benefit Permit (OBP) package to address impacts to protected species or habitat. Please note that the review period for an OBP, if such is required, is currently estimated at nine months to one year.

6.3 Department of Fisheries and Oceans Request for Review

As noted in **Section 4.2.4**, the detailed design will be submitted to DFO for review under the federal *Fisheries Act*.

7 CONSTRUCTION REQUIREMENTS

Construction Supervision – To ensure that the objectives of the outfall rehabilitation design are realized, it is important that someone with experience in channel design and restoration be part of the construction supervision (i.e., a qualified professional or representative of Aquafor Beech Ltd.). The supervision will enable construction issues to be addressed quickly and appropriately and ensure that important design details such as those listed below are implemented:

- Implementation of functional erosion and sediment control measures, including dewatering and pumping procedures;
- Removal of existing vegetation within, and protection of vegetation in close proximity to, the works area and access route;
- Confirmation of stone size gradation;
- Construction of an appropriate transition at the upstream and downstream tie-in points; and
- Restoration planting of native shrubs and Terraseeding of native seed mix.

Erosion and Sediment Control Measures – Erosion protection shall be used on regraded banks to provide erosion protection prior to the establishment of a vegetative cover.

Inspection of ESC measures should be completed regularly during the construction process to ensure that erosion and sediment control measures are functioning as intended and to address any immediate concerns. Similarly, monitoring of erosion control works should be completed following any flooding event to ensure that erosion control blankets and plantings are not compromised as a result of the event. The inspection and monitoring should be completed by an engineer, environmental inspector, or representative of Aquafor Beech Ltd.

April 1st, 2022

Timing – Construction timing is restricted for fisheries protection. The Indian River provides habitat to both spring and fall spawning species. As such, no in-water works may occur between October 1 to July 15 of any given year to respect spring and fall spawning species for the MNR Southern Region. Any tree removals on the site must take place outside of the period from April 1 to September 30, which is inclusive of the typical bird nesting season (April 1 to August 31) and the typical maternity roost season (April 1 - September 30).

Fish Removal – An initial fish rescue will be required once the in-water work area has been isolated; the fish rescue will be completed prior to dewatering the work area. Subsequent fish rescues will be required if the coffer dam isolating the work area is overtopped by high flows in the river. The contractor will be responsible for coordinating with the qualified aquatic biologist for fish rescues.

Construction Methodology – The channel bank and bed works must be undertaken in the dry. Dry working conditions will be created by blocking the perimeter of the work zone with coffer dams and routing the water around the work zone (dam and flume techniques). Additional precautions and procedures, specified in the detailed drawings, include:

- All practical measures will be implemented to maintain the work zone in good condition;
- Utilities will be located and protected;
- Equipment refuelling will take place in the designated staging area, a minimum of 30 m from the watercourse; and
- All erosion and sediment control measures will be maintained in good working order.

Site Access – Access for construction is proposed from Moffat Street. The access routes are shown on Sheet 5 of the drawing set. A staging and storage area has also been shown. Any changes to the access routes or staging area locations must be approved by the City and the field engineer.

Vegetation – To minimize the rate of erosion, it is desirable to establish vegetation quickly where it has been specified. Potted shrubs and a native seed mix (to be applied by Terraseeding) will be used to restore the site. Onsite consideration should be given to the season and prevailing light conditions for planting. If construction occurs after October, plantings should be completed as soon as possible in the following spring season.

8 CONSTRUCTION COST ESTIMATION

Preliminary construction costs have been estimated based on a schedule of quantities from the detailed design presented here. The construction cost estimate is \$226,148 which includes a 20% contingency but is exclusive of HST. The detailed schedule of quantities showing the breakdown of costs is provided on the following page in **Table 8-1**.

Table 8-1: Construction Cost Estimate for Reconstruction of Outfall 31

	PEMBROKE OUTLETS - OUTLET # 31						
City of Pembroke							
Item	Description	Qty	Unit	Unit Price	Extended Price (Excl. HST)		
	Section "A" – Site Preparation & Remova	ls					
1	Bonds and Insurance	1	LS		\$0		
2	Field Office	1	LS		\$0		
3	Construction Layout, Utility & Locates	1	LS	\$8,000	\$8,000		
4	Mobilization & Demobilization	1	LS	\$10,000	\$10,000		
5	Access Route, Mud Mat & Staging Areas	1	LS	\$12,000	\$10,000		
6	Clearing, Grubbing, and Vegetation Removal	1	LS	\$15,000	\$15,000		
7	Supply, Install & Remove Temporary Hoarding / Sediment Control Fence	65	m	\$20	\$1,300		
8	Supply, Install & Remove Temporary Construction Fence	30	m	\$15	\$450		
9	Stream Control, Bypass Pumping & Dewatering	1	LS	\$20,000	\$20,000		
10	MNRF Fish Collection Permit and Fish Rescues	1	LS	\$5,000	\$5,000		
11	Removal & Disposal of CSP Half Pipe, Excess Pipe	1	LS	\$8,000	\$8,000		
	Subtotal Section A (Excl of HST)				\$77,750		
	Section "B" – Sewer Works, Channel Works and I	Restora	ation				
12	Excavate, Earthwork, Grading & Disposal of Materials	1	LS	\$10,000	\$10,000		
13	Supply & Placement of 300mm dia. PVC pipe	10.6	m	\$1,800	\$19,080		
14	Supply & Placement of 250mm dia. PVC drop pipe	6	m	\$1,650	\$9,900		
15	Supply & Placement of 1200mm dia. Maintenance Hole including Watertight Frame Cover	1	ea	\$15,000	\$15,000		
16	Supply & Placement of Concrete Headwall	1	ea	\$10,000	\$10,000		
17	Supply & Placement of Angular Channel Substrate	55	tonne	\$200	\$11,000		
18	Supply & Placement of Vegetated Buttress						
	Roundtstone as specified	45	tonne	\$200	\$9,000		
	Topsoil to enhance vegetation	10	m³	\$50	\$500		
	Stock Plantings (2 gal potted @ 0.5 spacing)						
	i) Red-osier Dogwood	5	ea	\$45	\$225		
	ii) Round Leaved Dogwood	5	ea	\$45	\$225		
	iii) Slender Willow	5	ea	\$45	\$225		
	iv) Nannyberry	4	ea	\$45	\$180		
	v) Narrow-Leaved Meadows weet	5	ea	\$45	\$225		
19	Supply & Placement of Erosion Control Blanket - Coir Mat	155	m ²	\$8	\$1,240		
20	Supply & Placement of Topsoil for Restoration (300mm)	50	m ³	\$50	\$2,500		
21	Supply & Application of Terraseed Mixture (Upland)	100	m ²	\$8	\$800		
22	Supply & Application of Terraseed Mixture(Riparian)	55	m ²	\$8	\$440		
23	Supply & Planting of Shrubs (2 gal potted @ 1m spacing)						
	i) Round Leaved Dogwood	10	ea	\$45	\$450		
	ii) Chokecherry	10	ea	\$45	\$450		
	iii) Smooth Gooseberry	10	ea	\$45	\$450		
	iv) Wild Red Raspberry	10	ea	\$45	\$450		
	v) Narrow-Leaved Meadowsweet	10	ea	\$45	\$450		
Subtotal Section B (Excl of HST)							

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 Branch Office:

55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

April 1st, 2022

	Section "C" – Provisional				
24	Full Road Repair (Removal, Granular Placement, New Asphalt, Buffer Restoration)	65	m ²	\$250	\$16,250
25	Migratory Nesting Bird Survey	1	LS	\$5,000	\$5,000
26	Retain Certified Arborist	1	LS	\$5,000	\$5,000
	Subtotal Section C (Excl of HST)				\$26,250
	Section "D" – Contingency				
27	Contingency (20%)	1	LS	\$39,358	\$39,358
	Subtotal Section D (Excl of HST)		1		\$39,358
	Section "A" – Site Preparation & Removals				\$77.750
	1				\$77,750
	Section "B" – Sewer Works, Channel Works and Restoration				\$92,790
	Section "C" – Provisional				\$26,250
	Section "D" – Contingency				\$39,358
	Sub Total (Exc of taxes)				\$236,148
	HST @ 13%				\$30,699
	Total Bid Price (Incl of taxes)				\$266,847
	Outlet # 31 Engineering Estimate (Inc. Contingency, Exc. HS				\$236,14

9 **REFERENCES**

Natural Resources Canada (2021). Plant hardiness of Canada. Retrieved from http://planthardiness.gc.ca/

Department of Fisheries and Oceans. (2021). Projects near water. Retrieved from Fisheries and Oceans Canada: http://www.dfo-mpo.gc.ca/pnw-ppe/index-eng.html

10 SIGNATURES

This project is being completed with input from the following consulting staff:

Dave Maunder – Project Manager Robert Amos – Water Resources Lead Golmar Golmohammadi – Water Resources Engineer Gabriel Dubé – Water Resources Specialist Yun Xia – Water Resources Specialist Palka Sharma – CAD Technician Julie Scott – Terrestrial Ecologist Jakub Ripley – GIS Specialist Darcy LaFramboise – Certified Arborist Graham Eby – Aquatic Biologist

Upon your review, should you have any questions or comments, please do not hesitate to contact the undersigned.

Head Office:	Bran
2600 Skymark Ave, Building 6, Suite 202, L4W 5B2	55 R
Tel: 905-629-0099 Fax: 905-629-0089	Tel: 3

Branch Office: 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 [el: 519-224-3740 • Fax: 519-224-3750

April 1st, 2022

claved Maunder

Dave Maunder, M.Sc., P.Eng Project Manager Aquafor Beech Limited

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 13

April 1st, 2022

Technical Memo for Design and Reconstruction of Storm Sewer Outfall 35

1 INTRODUCTION

As part of the City-Wide Flood Risk Assessment and Storm Outlet Review, the City of Pembroke has requested an assessment of the condition on 17 of the City's storm sewer outfalls, complete with an inventory of the findings. After conducting the outfall assessment, Aquafor Beech reported a total of 9 outfalls in poor condition and in need of repair. The following Technical Memo provides an overview of the existing conditions of Outfall 35 as well as the Detailed Design of the proposed outfall reconstruction.

The study area and location of Outfall 35 are shown in **Figure 1-1**. The outfall consists of a series of disconnected box culverts and concrete pipe segments that convey water from ditches upstream of a decommissioned road to a scour pool, which is connected to a 20 m long outfall channel that discharges into Muskrat River, approximately 35 m upstream of Boundary Road. The decommissioned road runs parallel to Upper Valley Drive and connects Boundary Road East to the backlot of O'Kenny Craft Spirits off of International Drive. Outfall 35 was identified to be in need of rehabilitation and was ranked as the 3rd highest priority site, of the total 17 sites that were assessed.

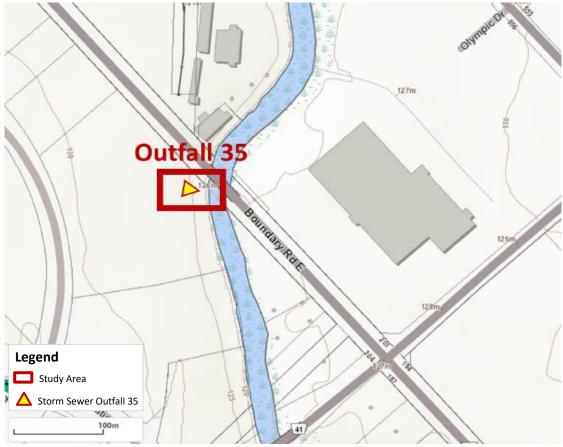


Figure 1-1: Location of Study Area for Storm Sewer Outfall 35

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 1

April 1st, 2022

2 EXISTING CONDITIONS

2.1 Overview

The assessment of Outfall 35 revealed that water is collected from upstream ditches by a concrete box culvert (Box Culvert #1, Figure 2-1) that is in fair condition and passes under a decommissioned asphalt road. On the downstream side of the road, it appears that both the box culvert and a ditch were intended to feed into a second concrete box culvert (Box Culvert #2, Figure 2-2), which is now severely deteriorated and segmented, causing water to flow around it. Water then passes into a series of disconnected 1050 mm concrete pipe segments (Figure 2-3), before discharging into a scour pool (Figure 2-4) that connects to the Muskrat River via a 20 m long outfall channel. Based on the observed existing conditions, it is unclear whether Box Culvert #2 and the concrete pipe were initially connected or simply joined by an open-air channel. Channel gradient is high throughout the study area, having an average of 10% between the outlet of Box Culvert 1 and the scour pool.

Figure 2-1: Box Culvert under the Asphalt Road (Box Culvert #1)

Figure 2-2: Failed Box Culvert (Box Culvert #2)

Figure 2-3: Concrete Pipe Segments

Figure 2-4: Scour Pool

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 2

2.2 Topographic Survey

A detailed topographic survey was completed from November 8th to November 19th in 2021 to record existing site conditions. Sufficient detail was captured to support the detailed design of the outfall reconstruction. Key parameters captured during the survey include:

- Longitudinal profile of the ground surface above and surrounding the culverts and pipe segments, extending ~5 m past the outlet of the scour pool;
- Thalweg of the channel between disconnected culvert and pipe segments;
- Any visible storm sewer infrastructure near the outlet (inverts and obverts, top of culvert and pipe segments, etc.);
- Cross sections and thalweg shots of ditches that feed into the culverts; and
- Ground shots at the edge of erosion scars and within the eroded areas.

The survey was completed using a high-precision GPS instrument that was referenced to the NAD83 UTM Zone 18N horizontal coordinate system and the CGVD2013 vertical datum. A DEM derived from LiDAR data collected between 2019-2020 by Natural Resources Canada was used to complement the topographic survey data, allowing for elevations to be determined beyond the extents of the survey.

2.3 Geotechnical Investigation

A detailed geotechnical investigation was undertaken by GEMTEC within the study area on February 14th, 2022. The assessment was intended to define and characterize the subsurface soil conditions, as well as make recommendations regarding channel bank stabilization measures. One (1) borehole designated as 22-02 was advanced to a depth of 4.9 m below grade using portable drilling equipment.

Soil samples were obtained at regular intervals in the overburden soils with a 51 mm diameter Standard Penetration Test split-spoon sample. This was done in accordance with ASTM Standard D-1586, which provides the penetration resistance (N-value) of the soils. Soil samples were examined in the field for type, texture and colour to classify each soil layer identified. The samples were sealed in air tight plastic bags and transferred to GEMTEC's laboratory for further examination and selection of appropriate samples for laboratory testing. The results of the geotechnical investigation, along with a borehole location plan, are included in **Appendix I**.

Fill material was encountered at the surface of the borehole, extending to 1.4 m below surface grade. The fill consisted of 200 mm of gravelly sand over brown silty clay fill with trace sand. The fill material was underlain by native deposits of silty clay, extending to the termination depth of the borehole. Based on soil sample appearance, the groundwater level was estimated to be at approximately 3.0 m below surface grade at the time of the investigation.

2.4 Tree Inventory

A comprehensive tree inventory was undertaken in the Outfall 35 study area in February, 2022 to identify trees that may potentially be removed or damaged to accommodate construction activities. A total of 8 trees were inventoried in the study area, including at any potentially suitable access and staging areas. Sheet 6 in the detailed design drawings shows the locations of the surveyed trees within the Outfall 35 study area. **Table 2-1** provides a summary of the tree inventory results by species.

April 1st, 2022

Tag #	# Species Common Name Species Botanical Name		Condition
860	White Spruce	Picea glauca	Good
861	White Pine	Pinus strobus	Good
862	White Ash	Fraxinus americana	Fair
863	Black Ash	Fraxinus nigra	Fair-Good
864	Manitoba Maple	Acer negundo	Fair-Good
865	White Pine	Pinus strobus	Good
NT1	Common Apple	Malus spp.	Fair
NT2	Willow sp.	Salix spp.	Good

Table 2-1: Tree Inventory Summary by Species

3 DESIGN FACTORS

At the outset of the design process, all opportunities, constraints, and considerations for the reconstruction of Outfall 35 were identified. This ensured that they were adequately considered during development of the detailed design. Constraints and considerations identified within the study area were as follows:

Disturbance to Terrestrial Vegetation – Some of the trees and other vegetation located within the study area may be harmed or removed during construction. However, space allowing, any mature trees that are required for removal to facilitate construction will be compensated with trees plantings at a 3:1 ratio, along with 5 shrubs planted for every 1 tree planted. If there is insufficient space near the study area to meet this replanting target, trees will be planted at a minimum 1:1 ratio, with 5 shrubs planted for every 1 tree planted. Tree species selection will be based on their nativity within the City of Pembroke, and seed mix composition will reflect typical vegetation found within Plant Hardiness Zone 4b (Natural Resources Canada, 2021).

Utilities – In addition to the storm sewer infrastructure identified during the background review of base mapping provided by the City, Aquafor has also completed an Ontario One Call utility locate request for the entire site identify all other utilities and any potential design conflicts.

Channel Bank Stabilization – Toe erosion and slope failures along the outfall channel should be restored by regrading to attain a long-term stable slope, followed by the application of channel bank and toe erosion protection.

Upstream and Downstream Tie-In Points – Care must be taken to ensure that there is a smooth transition into, and out of, the proposed outfall design, such that the stability of the slope and channel banks are not compromised.

4 DETAILED DESIGN

4.1 Principal Design Components

Detailed design drawings for Outfall 35 are provided under a separate cover. The proposed design consists of restoring the outfall channel using a series of cascades and pools, allowing for a more gradual bed level change

April 1st, 2022

than that achieved across the existing channel bed and deteriorated conveyance structures. This approach was selected over riffle-pool morphology because the gradient between the upstream and downstream tie-in points is 10%, whereas engineered riffle slopes do not usually exceed 3%.

Specific elements of the design and construction include removing the existing deteriorated and segmented concrete box culvert (Box Culvert 2) and sewer pipe. The proposed works will include substantial amounts of cutting in order to provide a more uniform channel gradient. Bank slopes are to be regraded and vegetated with native riparian seed mix, shrubs, and trees, which are intended to provide additional slope stability and resist erosion from overland flow during extreme storm events.

4.2 Wildlife Mitigation Measures

4.2.1 Breeding Birds

Tree removals should occur outside of the bird nesting window (generally April 1st to August 31st) to ensure that active nests of protected species are not harmed or destroyed and that the project is compliant with the *Migratory Birds Convention Act*. Individual trees or areas of low-complexity habitat could potentially be removed during the nesting window following an inspection to confirm the absence of active nesting in the area. However, this method is not recommended for complex habitats (e.g., mature woodland) due to the low detectability of nests in such areas, and is further not permitted if a restriction is placed on tree removal due to SAR bat habitat.

4.2.2 Bat Maternity Roosts

The active window for Ontario's SAR bats extends from April 1st to September 30th. The study area is inclusive of potential SAR bat habitat, and as such, tree removal is prohibited during this period.

4.2.3 In-Water Works Timing Windows and Fisheries Act

Discussions with MNRF (personal communication, March 15, 2022) confirmed that the Muskrat River provides habitat to both spring and fall spawning species. As a major watercourse, the Muskrat River contains fish at any time during any given year. Thus, no in-water works may occur between October 1 to July 15 of any given year to avoid works within the spring and fall spawning windows for the MNR Southern Region (March 15 - July 15 and October 1 - May 21, respectively).

4.2.4 DFO Self-assessment

The federal *Fisheries Act* requires that projects avoid causing the death of fish and the harmful alteration, disruption or destruction of fish habitat unless authorized by the Minister of Fisheries and Oceans Canada (DFO). This applies to work being conducted in or near waterbodies that support fish at any time during any given year or are connected to waterbodies that support fish at any time during any given year. As noted above, the study area does contain fish at any time during any given year. Therefore, the *Fisheries Act* applies to works conducted in or near water at the site.

As the proposed works include minor regrading and rock placement within the high-water mark of the channel, Aquafor will undertake a request for regulatory review under the federal *Fisheries Act*.

4.3 Vegetation Removals and Restoration

A detailed restoration plan is shown on Sheet 7 of the design drawings. As soon as possible following construction, all disturbed areas should be revegetated through application of an annual cover crop and native herbaceous seed mix in areas of disturbance. Native seed mix should include wildflowers (preferably including milkweed species) to promote wildlife habitat. Terraseeding is the preferred application to hydroseeding. The recommended annual cover crop consists of Canada Wild Rye (*Elymus canadensis*) (40%) and Annual Oats (*Avena sativa*) (60%) applied at a rate of 33 kg/ha. after the risk of frost (i.e., after March 31 and before October 31); if applied during the time of frost risk, the cover crop should be 100% Annual Oats at a rate of 33kg/ha.

In addition, interplanting with native trees and shrubs is recommended within the coastal floodplain where appropriate. Restoration within disturbed areas should be in keeping with existing communities, and interplanting should utilize vegetation appropriate to the target community. Such interplanting will aid in stabilizing the banks and will also enhance habitat for wildlife and aquatic species.

All species selected should be native, suitable to the site conditions, and reflect the diversity of species commonly found in local natural areas. Based on native species within Pembroke and the site's location within Plant Hardiness Zone 4b, suggested species and sizes are listed in **Table 4-1**, **Table 4-2**, and **Table 4-3**.

April 1st, 2022

Table 4-1: Native Seed Mixes						
Scientific Name	Common Name	% by Weight				
Nurse Crop Mix (Application Rate: 33 kg/ha)						
Elymus canadensis	Canada Wild Rye	40%				
Avena sativa	Annual Oats	60%				
Riparian Mix (Application Rate: 25	kg/ha)					
Anemonastrum canadensis	Canada Anemone	1%				
Apocynum cannibinum	Indian-hemp Dogbane	5%				
Asclepias incarnata ssp. incarnata	Swamp Milkweed	5%				
Bidens cernua	Nodding Beggarticks	2%				
Bidens frondose	Devil's Beggarticks	2%				
Carex granularis	Meadow/Open Field Sedge	20%				
Clematis viginiana	Virgin's Bower	4%				
Elymus virginicus var. virginicus	Virginia Wild Rye	10%				
Euthamia graminifolia	Grass-leaved Goldenrod	5%				
Juncus dudleyi	Dudley's Rush	10%				
Poa palustris	Fowl Bluegrass	25%				
Solidago canadensis	Canada Goldenrod	4%				
Symphyotrichum novae-angliae	New England Aster	1%				
Symphyotrichum puniceum	Purple Stemmed Aster	1%				
Verbena hastata	Blue Vervain	5%				

Table 4-2: Native Tree Plantings

Scientific Name	Common Name	Amount	Size
Acer saccharum	Sugar Maple	3	5 gal. potted
Picea glauca	White Spruce	3	5 gal. potted
Pinus strobus	White Pine	2	5 gal. potted
Thuja occidentalis	Eastern White Cedar	2	5 gal. potted
Tilia americana	Basswood	2	5 gal. potted

Table 4-3: Native Shrub Plantings

Scientific Name	Common Name	Amount	Size			
Amelanchier arborea	Downy Juneberry	10	2 gal. potted			
Cornus alternifolia	Alternate-leaved Dogwood	10	2 gal. potted			
Cornus rugosa	Round-leaved Dogwood	10	2 gal. potted			
Lonicera canadensis	Northern Fly Honeysuckle	10	2 gal. potted			
Prunus virginiana	Chokecherry	10	2 gal. potted			
Ribes hirtellum	Smooth Gooseberry	10	2 gal. potted			

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

4.3.1 Removal Timing Window and Protection Measures

It will be necessary to remove some trees and other vegetation to facilitate the proposed works. Of the 8 live trees identified during the assessment (detailed previously in **Table 2-1**), 4 have been identified for removal. Trees identified for removal are listed in **Table 4-4** below and are shown on Sheet 6 of the detailed design drawings. Tree removals on the site should take place outside of the typical bird nesting and bat maternity roost season (collectively April 1 to September 30).

Construction activities can have adverse effects on nearby trees that are to remain in place and should not be disturbed by the proposed works. Tree protections measures, consisting of page wire hoarding specified on Sheet 5 of the detailed design drawings, should be followed in order to mitigate against potential damages.

Tag #	Species Common Name Species Botanical Name		Condition
860	White SprucePicea glauca		Good
862	White Ash	Fraxinus americana	Fair
NT1	Common Apple	Malus spp.	Fair
NT2	Willow sp.	Salix spp.	Good

Table 4-4: Trees Identified for Removal

5 EASEMENT REQUIREMENTS

Aquafor was provided the property fabric by the City of Pembroke on March 7, 2022. In all cases, an OLS should be retained to confirm property parcels and associated limits. In some cases, it may be necessary to require temporary or permanent easements.

6 PERMITS AND APPROVALS

6.1 MNRF Fish Collection Permit

As de-watering will be required to accommodate construction, a fish rescue must be conducted. It will therefore be necessary to obtain a fish collection permit from the MNRF prior to construction. In addition, the dewatering and fish rescue must be conducted in accordance with MNRF timing windows to reduce harm to aquatic species, with no in-water works occurring between October 1 to July 15 (as discussed in **Section 4.2.3**). In the event that the work area becomes inundated following a significant rainfall event, fish rescues will be required prior to continuing instream works.

6.2 Provincial Species at Risk – MECP 17(2) (b/c) Species at Risk Permit

Prior to implementation, the study area should be subject to a Species at Risk (SAR) screening to identify any potential conflicts and ensure compliance with applicable legislation. Screening should be completed by consulting background information and agencies (MECP) to identify potential species associations, and assessing the potential for those species to occur in the study area based on their habitat requirements as compared to the habitat present on site. Mitigation measures to prevent or minimize impacts to species should be developed. If endangered or threatened species will potentially be impacted by the project, an Information Gathering Form (IGF) should be prepared and submitted to the MECP so that they may review the project and advise on

requirements under the *Endangered Species Act*. Such requirements may include: implementation of additional mitigation measures as specified by MECP; registering the project via a Notice of Activity under a regulatory exemption; or preparation of an Overall Benefit Permit (OBP) package to address impacts to protected species or habitat. Please note that the review period for an OBP, if such is required, is currently estimated at nine months to one year.

6.3 Department of Fisheries and Oceans Request for Review

As noted in **Section 4.2.4**, the detailed design will be submitted to DFO for review under the federal *Fisheries Act*.

7 CONSTRUCTION REQUIREMENTS

Construction Supervision – To ensure that the objectives of the outfall rehabilitation design are realized, it is important that someone with experience in channel design and restoration be part of the construction supervision (i.e., a qualified professional or representative of Aquafor Beech Ltd.). The supervision will enable construction issues to be addressed quickly and appropriately and ensure that important design details such as those listed below are implemented:

- Implementation of functional erosion and sediment control measures, including dewatering and pumping procedures;
- Removal of existing vegetation within, and protection of vegetation in close proximity to, the works area and access route;
- Confirmation of stone size gradation;
- Construction of an appropriate transition at the upstream and downstream tie-in points; and
- Restoration planting of native shrubs and trees, and Terraseeding of native seed mix.

Erosion and Sediment Control Measures – Erosion protection shall be used on regraded banks to provide erosion protection prior to the establishment of a vegetative cover.

Inspection of ESC measures should be completed regularly during the construction process to ensure that erosion and sediment control measures are functioning as intended and to address any immediate concerns. Similarly, monitoring of erosion control works should be completed following any flooding event to ensure that erosion control blankets and plantings are not compromised as a result of the event. The inspection and monitoring should be completed by an engineer, environmental inspector, or representative of Aquafor Beech Ltd.

Timing – Construction timing is restricted for fisheries protection. The Muskrat River provides habitat to both spring and fall spawning species. As such, no in-water works may occur between October 1 to July 15 of any given year to respect spring and fall spawning species for the MNR Southern Region. All tree removals on the site must take place outside of the period from April 1 to September 30, which is inclusive of the typical bird nesting season (April 1 to August 31) and the typical maternity roost season (April 1 - September 30).

Fish Removal – An initial fish rescue will be required once the in-water work area has been isolated; the fish rescue will be completed prior to dewatering the work area. Subsequent fish rescues will be required if the coffer dam isolating the work area is overtopped by high flows in the river. The contractor will be responsible for coordinating with the qualified aquatic biologist for fish rescues.

April 1st, 2022

Construction Methodology – The channel bank and bed works must be undertaken in the dry. Dry working conditions will be created by blocking the perimeter of the work zone with coffer dams and routing the water around the work zone (dam and flume techniques). Additional precautions and procedures, specified in the detailed drawings, include:

- All practical measures will be implemented to maintain the work zone in good condition;
- Utilities will be located and protected;
- Equipment refuelling will take place in the designated staging area, a minimum of 30 m from the watercourse; and
- All erosion and sediment control measures will be maintained in good working order.

Site Access – Access for construction is proposed from Boundary Road East through the decommissioned asphalt road. The access routes are shown on Sheet 6 of the drawing set. A staging and storage area has also been shown. Any changes to the access routes or staging area locations must be approved by the City and the field engineer.

Vegetation – To minimize the rate of erosion, it is desirable to establish vegetation quickly where it has been specified. Potted shrubs, potted trees, and a native seed mix (to be applied by Terraseeding) will be used to restore the site. Onsite consideration should be given to the season and prevailing light conditions for planting. If construction occurs after October, plantings should be completed as soon as possible in the following spring season.

8 CONSTRUCTION COST ESTIMATION

Preliminary construction costs have been estimated based on a schedule of quantities from the detailed design presented here. The construction cost estimate is \$263,100 which includes a 20% contingency but is exclusive of HST. The detailed schedule of quantities showing the breakdown of costs is provided on the following page in **Table 8-1**.

Table 8-1: Construction Cost Estimate for Reconstruction of Outfall 35

	PEMBROKE OUTLETS - OUTLET # 3	35					
	City of Pembroke						
Item	Description	Qty	Unit	Unit Price	Extended Price (Excl. HST)		
	Section "A" – Site Preparation & Remo	vals			-		
1	Bonds and Insurance	1	LS		\$0		
2	Field Office	1	LS		\$0		
3	Construction Layout, Utility & Locates	1	LS	\$8,000	\$8,000		
4	Mobilization & Demobilization	1	LS	\$10,000	\$10,000		
5	Access Route, Mud Mat & Staging Areas	1	LS	\$15,000	\$10,000		
6	Clearing, Grubbing, and Vegetation Removal	1	LS	\$25,000	\$25,000		
7	Supply, Install & Remove Temporary Erosion & Sediment Control Fence	100	m	\$20	\$2,000		
8	Supply, Install & Remove Temporary Construction Fence	32	m	\$15	\$480		
9	Stream Control, Bypass Pumping & Dewatering	1	LS	\$20,000	\$20,000		
10	MNRF Fish Collection Permit and Fish Rescues	1	LS	\$5,000	\$5,000		
11	Removal & Disposal of Concrete Headwalls and Concrete Sewer Pipe	1	LS	\$20,000	\$20,000		
	Subtotal Section A (Excl of HST)				\$100,480		
	Section "B" – Sewer Works, Channel Works and	d Restor	ation				
12	Excavate, Earthwork, Grading & Disposal of Materials	1	LS	\$15,000	\$15,000		
17	Supply & Placement of Angular Channel Substrate	120	tonne	\$200	\$24,000		
17	Supply & Placement of Boulder Ribs (Boulder size 1mx1mx1m)	90	tonne	\$235	\$21,150		
19	Supply & Placement of Erosion Control Blanket - Coir Mat	370	m ²	\$8	\$2,960		
20	Supply & Placement of Topsoil for Restoration (300mm)	110	m ³	\$50	\$5,500		
21	Supply & Application of Terraseed Mixture	370	m ²	\$8	\$2,960		
23	Supply & Planting of Trees (5 gal potted @ min 2.5m spacing)						
	i) Sugar Maple	3	ea	\$250	\$750		
	ii) White Spruce	3	ea	\$250	\$750		
	iii) White Pine	2	ea	\$250	\$500		
	iv) Eastern White Cedar	2	ea	\$250	\$500		
	v) Basswood	2	ea	\$250	\$500		
23	Supply & Planting of Shrubs (2 gal potted @ 1m spacing)				_		
	i) Round Leaved Dogwood	10	ea	\$45	\$450		
	ii) Chokecherry	10	ea	\$45	\$450		
	iii) Smooth Gooseberry	10	ea	\$45	\$450		
	iv) Alternate-Leaved Dogwood	10	ea	\$45	\$450		
	v) Downy juneberry	10	ea	\$45	\$450		
	vi) Northern Fly Honeysuckle	10	ea	\$45	\$450		
	Subtotal Section B (Excl of HST)				\$77,270		

April 1st, 2022

	Section "C" – Provisional				
24	Asphalt Road Repair (Removal, Granular Placement, New Asphalt, Buffer Restoration)	126	m ²	\$250	\$31,500
25	Migratory Nesting Bird Survey	1	LS	\$5,000	\$5,000
26	Retain Certified Arborist	1	LS	\$5,000	\$5,000
	Subtotal Section C (Excl of HST)				\$41,500
	Section "D" – Contingency				
27	Contingency (20%)	1	LS	\$43,850	\$43,850
	Subtotal Section D (Excl of HST)	1			\$43,850
	Section "A" – Site Preparation & Removals				\$100,480
	Section "B" – Sewer Works, Channel Works and Restoration				\$77,270
	Section "C" – Provisional				\$41,500
	Section "D" – Contingency				\$43,850
	Sub Total (Exc of taxes)				\$263,100
	HST @ 13%				\$34,203
	Total Bid Price (Incl of taxes)				\$297,303
	Outlet # 35 Engineering Estimate (Inc. Contingency, Exc. HST				\$263,10

9 **REFERENCES**

Natural Resources Canada (2021). Plant hardiness of Canada. Retrieved from http://planthardiness.gc.ca/

Department of Fisheries and Oceans. (2021). Projects near water. Retrieved from Fisheries and Oceans Canada: http://www.dfo-mpo.gc.ca/pnw-ppe/index-eng.html

10 SIGNATURES

This project is being completed with input from the following consulting staff:

Dave Maunder – Project Manager Robert Amos – Water Resources Lead Golmar Golmohammadi – Water Resources Engineer Gabriel Dubé – Water Resources Specialist Yun Xia – Water Resources Specialist Palka Sharma – CAD Technician Julie Scott – Terrestrial Ecologist Jakub Ripley – GIS Specialist Darcy LaFramboise – Certified Arborist Graham Eby – Aquatic Biologist

Upon your review, should you have any questions or comments, please do not hesitate to contact the undersigned.

Head Office:		Bro
2600 Skymark Ave,	Building 6, Suite 202, L4W 5B2	55
Tel: 905-629-0099	Fax: 905-629-0089	Tel

Branch Office: 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 fel: 519-224-3740 • Fax: 519-224-3750

April 1st, 2022

claved Maunder

Dave Maunder, M.Sc., P.Eng Project Manager Aquafor Beech Limited

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 13

www.aquaforbeech.com

April 1st, 2022

Technical Memo for Design and Reconstruction of Storm Sewer Outfall 41

1 INTRODUCTION

As part of the City-Wide Flood Risk Assessment and Storm Outlet Review, the City of Pembroke has requested an assessment of the condition on 17 of the City's storm sewer outfalls, complete with an inventory of the findings. After conducting the outfall assessment, Aquafor Beech reported a total of 9 outfalls in poor condition and in need of repair. The following Technical Memo provides an overview of the existing conditions of Outfall 41 as well as the Detailed Design of the proposed outfall reconstruction.

The study area and location of Outfall 41 are shown in **Figure 1-1**. The outfall pipe has a diameter of 600 mm and extends off of Eganville Road, outletting into the Indian River, immediately downstream of the Eganville Road bridge crossing. Outfall 41 was identified to be in need of rehabilitation and was ranked as the 2nd highest priority site, of the total 17 sites that were assessed.

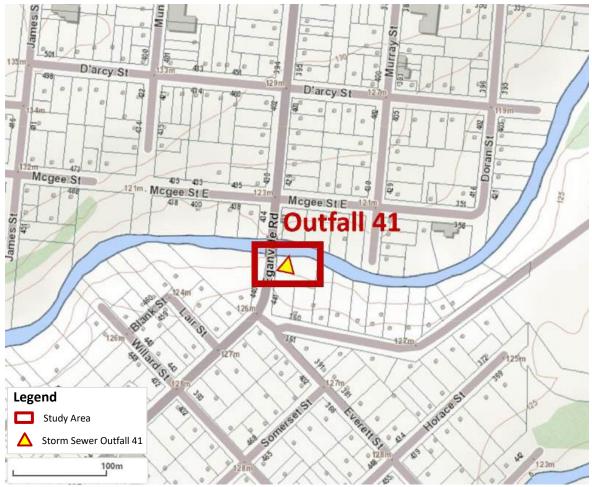


Figure 1-1: Location of Study Area for Storm Sewer Outfall 41

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

April 1st, 2022

2 EXISTING CONDITIONS

2.1 Overview

The assessment of Outfall 41 revealed that it has been outflanked and is in critical condition (Figure 2-1 and Figure 2-2). The concrete headwall and 600 mm sewer pipe have been undermined, which appears to have caused settling of the outfall structure, thereby placing stress on the concrete pipe. Two points of failure were noted along the concrete pipes: a 1" wide crack along the exposed outlet pipe that was leaking water (Figure 2-3), and a 1" wide gap between two pipe segments (Figure 2-4).

Figure 2-1: Outflanked Outlet Pipe

Figure 2-2: View of Outfall 41 Looking Downstream

Figure 2-3: Cracked Concrete Pipe

Figure 2-4: Disconnected Pipe Segments

2.2 Topographic Survey

A detailed topographic survey was completed from November 8th to November 19th in 2021 to record existing site conditions. Sufficient detail was captured to support the detailed design of the outfall reconstruction. Key parameters captured during the survey include:

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089

Branch Office: 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

- Longitudinal profile of the ground surface above the storm sewer pipe, extending into the Indian River to capture streambed tie-in elevations;
- Any visible storm sewer infrastructure near the outlet (invert and obvert, exposed pipe, headwall, etc.);
- Upstream maintenance hole lid and pipe inverts;
- Top and bottom of bank elevations approximately 5-10 m upstream and downstream of the storm sewer outfall; and
- Ground shots beside the exposed pipe, i.e., within eroded areas.

The survey was completed using a high-precision GPS instrument that was referenced to the NAD83 UTM Zone 18N horizontal coordinate system and the CGVD2013 vertical datum. A DEM derived from LiDAR data collected between 2019-2020 by Natural Resources Canada was used to complement the topographic survey data, allowing for elevations to be determined beyond the extents of the survey.

2.3 Geotechnical Investigation

A detailed geotechnical investigation was undertaken by GEMTEC within the study area on February 11th, 2022. The assessment was intended to define and characterize the subsurface soil conditions, inform the design of the proposed outfall reconstruction, and make recommendations regarding slope stabilization measures. One (1) borehole designated as 22-01 was advanced to a depth of 4.3 m below grade using portable drilling equipment.

Soil samples were obtained at regular intervals in the overburden soils with a 51 mm diameter Standard Penetration Test split-spoon sample. This was done in accordance with ASTM Standard D-1586, which provides the penetration resistance (N-value) of the soils. Soil samples were examined in the field for type, texture and colour to classify each soil layer identified. The samples were sealed in air tight plastic bags and transferred to GEMTEC's laboratory for further examination and selection of appropriate samples for laboratory testing. The results of the geotechnical investigation, along with a borehole location plan, are included in **Appendix I**.

A 75 mm thick topsoil layer was encountered at the ground surface, followed by a 1 m layer of fill material composed of brown sand and silt with trace gravel. The fill material was underlain by native deposits of sand with silt (2.1 m thick) and silty clay (extending to the termination depth of the borehole). Based on soil sample appearance, the groundwater level was estimated to be at approximately 2.1 m below surface grade at the time of the investigation.

2.4 Tree Inventory

A comprehensive tree inventory was undertaken in the Outfall 41 study area in February, 2022 to identify trees that may potentially be removed or damaged to accommodate construction activities. A total of 15 trees were inventoried in the study area, including at any potentially suitable access and staging areas. Sheet 5 in the detailed design drawings shows the locations of the surveyed trees within the Outfall 41 study area. **Table 2-1** provides a summary of the tree inventory results by species.

April 1st, 2022

Tag #	Species Common Name	Species Botanical Name	Condition
846	Manitoba Maple	Acer negundo	Good
847	Manitoba Maple	Acer negundo	Fair
848	Manitoba Maple	Acer negundo	Fair-Poor
849	Manitoba Maple	Acer negundo	Fair
850	Manitoba Maple	Acer negundo	Good, Fair(23), Fair-Poor(26)
851	Manitoba Maple	Acer negundo	Fair-Good
852	Manitoba Maple	Acer negundo	Fair-Good
853	White Ash	Fraxinus americana	Good
854	White Ash	Fraxinus americana	Good
855	Manitoba Maple	Acer negundo	Fair-Poor
856	Manitoba Maple	Acer negundo	Fair-Good
857	Manitoba Maple	Acer negundo	Fair-Good
858	Manitoba Maple	Acer negundo	Fair-Poor
859	Manitoba Maple	Acer negundo	Fair-Good
NT1	Manitoba Maple	Acer negundo	Fair

Table 2-1. Tree Inventory Summary by Species

DESIGN FACTORS 3

At the outset of the design process, all opportunities, constraints, and considerations for the reconstruction of Outfall 41 were identified. This ensured that they were adequately considered during development of the detailed design. Constraints and considerations identified within the study area were as follows:

Disturbance to Terrestrial Vegetation – Some of the trees and other vegetation located within the study area may be harmed or removed during construction. However, space allowing, any mature trees that are required for removal to facilitate construction will be compensated with trees plantings at a 3:1 ratio, along with 5 shrubs planted for every 1 tree planted. If there is insufficient space near the study area to meet this replanting target, trees will be planted at a minimum 1:1 ratio, with 5 shrubs planted for every 1 tree planted. Tree species selection will be based on their nativity within the City of Pembroke, and seed mix composition will reflect typical vegetation found within Plant Hardiness Zone 4b (Natural Resources Canada, 2021).

Utilities – In addition to the storm sewer infrastructure identified during the background review of base mapping provided by the City, Aquafor has also completed an Ontario One Call utility locate request for the entire site identify all other utilities and any potential design conflicts.

Channel Bank Stabilization – Toe erosion and slope failures should be restored by regrading to attain a natural long-term stable slope, followed by the application of channel bank and toe erosion protection.

Upstream and Downstream Tie-In Points – Care must be taken to ensure that there is a smooth transition into, and out of, the proposed outfall design, such that the stability of the slope and channel banks are not compromised.

Outlet Protection – The design should consider appropriate protection to prevent erosion and scouring damage to the pipe, structures and associated channel works.

4 DETAILED DESIGN

4.1 Principal Design Components

Detailed design drawings for Outfall 41 are provided under a separate cover. The proposed design consists of removing the 5 m portion of exposed concrete pipe and the existing headwall, such that the outlet is recessed from the Indian River. A new concrete headwall is proposed to mitigate erosion near the outlet pipe and prevent scouring of the slope, and to allow for a stable confluence of the outfall channel with the Indian River.

Additional erosion protection works include a 5 m long rip-rap lined scour pool between the outlet and the Indian River. Furthermore, a vegetated buttress having a total length of ~13 m is proposed to provide bank protection near the outfall and to prevent exposure of the remaining sewer pipe.

4.2 Wildlife Mitigation Measures

4.2.1 Breeding Birds

Tree removals should occur outside of the bird nesting window (generally April 1st to August 31st) to ensure that active nests of protected species are not harmed or destroyed and that the project is compliant with the *Migratory Birds Convention Act*. Individual trees or areas of low-complexity habitat could potentially be removed during the nesting window following an inspection to confirm the absence of active nesting in the area. However, this method is not recommended for complex habitats (e.g., mature woodland) due to the low detectability of nests in such areas, and is further not permitted if a restriction is placed on tree removal due to SAR bat habitat.

4.2.2 Bat Maternity Roosts

The active window for Ontario's SAR bats extends from April 1st to September 30th. The study area is inclusive of potential SAR bat habitat, and as such, tree removal is prohibited during this period.

4.2.3 In-Water Works Timing Windows and Fisheries Act

Discussions with MNRF (personal communication, March 15, 2022) confirmed that the Indian River provides habitat to both spring and fall spawning species. As a major watercourse, the Indian River contains fish at any time during any given year. Thus, no in-water works may occur between October 1 to July 15 of any given year to avoid works within the spring and fall spawning windows for the MNR Southern Region (March 15 - July 15 and October 1 - May 21, respectively).

4.2.4 **DFO Self-assessment**

The federal Fisheries Act requires that projects avoid causing the death of fish and the harmful alteration, disruption or destruction of fish habitat unless authorized by the Minister of Fisheries and Oceans Canada (DFO). This applies to work being conducted in or near waterbodies that support fish at any time during any given year or are connected to waterbodies that support fish at any time during any given year. As noted above, the study area does contain fish at any time during any given year. Therefore, the Fisheries Act applies to works conducted in or near water at the site.

As the proposed works include minor regrading and rock placement within the high-water mark of the channel, Aquafor will undertake a request for regulatory review under the federal Fisheries Act.

4.3 **Vegetation Removals and Restoration**

A detailed restoration plan is shown on Sheet 6 of the design drawings. As soon as possible following construction, all disturbed areas should be revegetated through application of an annual cover crop and native herbaceous seed mix in areas of disturbance. Native seed mix should include wildflowers (preferably including milkweed species) to promote wildlife habitat. Terraseeding is the preferred application to hydroseeding. The recommended annual cover crop consists of Canada Wild Rye (Elymus canadensis) (40%) and Annual Oats (Avena sativa) (60%) applied at a rate of 33 kg/ha. after the risk of frost (i.e., after March 31 and before October 31); if applied during the time of frost risk, the cover crop should be 100% Annual Oats at a rate of 33kg/ha.

In addition, interplanting with native trees and shrubs is recommended within the coastal floodplain where appropriate. Restoration within disturbed areas should be in keeping with existing communities, and interplanting should utilize vegetation appropriate to the target community. Such interplanting will aid in stabilizing the banks and will also enhance habitat for wildlife and aquatic species.

All species selected should be native, suitable to the site conditions, and reflect the diversity of species commonly found in local natural areas. Based on native species within Pembroke and the site's location within Plant Hardiness Zone 4b, suggested species and sizes are listed in Table 4-1, Table 4-2, and Table 4-3.

Scientific Name	Common Name	% by Weight				
Nurse Crop Mix (Application Rate: 33 kg/ha)						
Elymus canadensis	Canada Wild Rye	40%				
Avena sativa	Annual Oats	60%				
Riparian Mix (Application Rate: 25	kg/ha)					
Anemonastrum canadensis	Canada Anemone	1%				
Apocynum cannibinum	Indian-hemp Dogbane	5%				
Asclepias incarnata ssp. incarnata	Swamp Milkweed	5%				
Bidens cernua	Nodding Beggarticks	2%				
Bidens frondose	Devil's Beggarticks	2%				
Carex granularis	Meadow/Open Field Sedge	20%				
Clematis viginiana	Virgin's Bower	4%				

.

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089

Branch Office: 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

April 1st, 2022

Elymus virginicus var. virginicus	Virginia Wild Rye	10%
Euthamia graminifolia	Grass-leaved Goldenrod	5%
Juncus dudleyi	Dudley's Rush	10%
Poa palustris	Fowl Bluegrass	25%
Solidago canadensis	Canada Goldenrod	4%
Symphyotrichum novae-angliae	New England Aster	1%
Symphyotrichum puniceum	Purple Stemmed Aster	1%
Verbena hastata	Blue Vervain	5%

Table 4-2: Native Tree Plantings

Scientific Name	Common Name	Amount	Size
Picea glauca	White Spruce	5	5 gal. potted
Thuja occidentalis	Eastern White Cedar	5	5 gal. potted
Tilia americana	Basswood	5	5 gal. potted

Table 4-3: Native Shrub Plantings

Scientific Name	Common Name	Amount	Size
Restoration Plantings			
Amelanchier arborea	Downy Juneberry	15	2 gal. potted
Cornus rugosa	Round-leaved Dogwood	15	2 gal. potted
Lonicera canadensis	Northern Fly Honeysuckle	15	2 gal. potted
Prunus virginiana	Chokecherry	15	2 gal. potted
Spirea alba	Narrow-leaved Meadowsweet	15	2 gal. potted
Vegetated Buttress Plantings			
Cornus sericea	Red-osier Dogwood	8	2 gal. potted
Salix petiolaris	Slender Willow	8	2 gal. potted
Spirea alba	Narrow-leaved Meadowsweet	8	2 gal. potted
Viburnum lentago	Nannyberry	8	2 gal. potted

4.3.1 Removal Timing Window and Protection Measures

It will be necessary to remove some trees and other vegetation to facilitate the proposed works. Of the 15 live trees identified during the assessment (detailed previously in **Table 2-1**), 10 have been identified for removal. Trees identified for removal are listed in **Table 4-4** below and are shown on Sheet 5 of the detailed design drawings. Tree removals on the site should take place outside of the typical bird nesting and bat maternity roost season (collectively April 1 to September 30).

Construction activities can have adverse effects on nearby trees that are to remain in place and should not be disturbed by the proposed works. Tree protections measures, consisting of page wire hoarding specified on Sheet 4 of the detailed design drawings, should be followed in order to mitigate against potential damages.

Table 4-4: Trees Identified for Removal

April 1st, 2022

Tag #	Species Common Name	Species Botanical Name	Condition
846	Manitoba Maple	Acer negundo	Good
847	Manitoba Maple	Acer negundo	Fair
848	Manitoba Maple	Acer negundo	Fair-Poor
852	Manitoba Maple	Acer negundo	Fair-Good
853	White Ash	Fraxinus americana	Good
854	White Ash	Fraxinus americana	Good
855	Manitoba Maple	Acer negundo	Fair-Poor
856	Manitoba Maple	Acer negundo	Fair-Good
857	Manitoba Maple	Acer negundo	Fair-Good
NT1	Manitoba Maple	Acer negundo	Fair

5 EASEMENT REQUIREMENTS

Aquafor was provided the property fabric by the City of Pembroke on March 7, 2022. In all cases, an OLS should be retained to confirm property parcels and associated limits. In some cases, it may be necessary to require temporary or permanent easements.

6 PERMITS AND APPROVALS

6.1 MNRF Fish Collection Permit

As de-watering will be required to accommodate construction, a fish rescue must be conducted. It will therefore be necessary to obtain a fish collection permit from the MNRF prior to construction. In addition, the dewatering and fish rescue must be conducted in accordance with MNRF timing windows to reduce harm to aquatic species, with no in-water works occurring between October 1 to July 15 (as discussed in **Section 4.2.3**). In the event that the work area becomes inundated following a significant rainfall event, fish rescues will be required prior to continuing instream works.

6.2 Provincial Species at Risk – MECP 17(2) (b/c) Species at Risk Permit

Prior to implementation, the study area should be subject to a Species at Risk (SAR) screening to identify any potential conflicts and ensure compliance with applicable legislation. Screening should be completed by consulting background information and agencies (MECP) to identify potential species associations, and assessing the potential for those species to occur in the study area based on their habitat requirements as compared to the habitat present on site. Mitigation measures to prevent or minimize impacts to species should be developed. If endangered or threatened species will potentially be impacted by the project, an Information Gathering Form (IGF) should be prepared and submitted to the MECP so that they may review the project and advise on requirements under the *Endangered Species Act*. Such requirements may include: implementation of additional mitigation measures as specified by MECP; registering the project via a Notice of Activity under a regulatory exemption; or preparation of an Overall Benefit Permit (OBP) package to address impacts to protected species

Head Office:

or habitat. Please note that the review period for an OBP, if such is required, is currently estimated at nine months to one year.

6.3 Department of Fisheries and Oceans Request for Review

As noted in **Section 4.2.4**, the detailed design will be submitted to DFO for review under the federal *Fisheries Act*.

7 CONSTRUCTION REQUIREMENTS

Construction Supervision – To ensure that the objectives of the outfall rehabilitation design are realized, it is important that someone with experience in channel design and restoration be part of the construction supervision (i.e., a qualified professional or representative of Aquafor Beech Ltd.). The supervision will enable construction issues to be addressed quickly and appropriately and ensure that important design details such as those listed below are implemented:

- Implementation of functional erosion and sediment control measures, including dewatering and pumping procedures;
- Removal of existing vegetation within, and protection of vegetation in close proximity to, the works area and access route;
- Confirmation of stone size gradation;
- Construction of an appropriate transition at the upstream and downstream tie-in points; and
- Restoration planting of native shrubs and trees, and Terraseeding of native seed mix.

Erosion and Sediment Control Measures – Erosion protection shall be used on regraded banks to provide erosion protection prior to the establishment of a vegetative cover.

Inspection of ESC measures should be completed regularly during the construction process to ensure that erosion and sediment control measures are functioning as intended and to address any immediate concerns. Similarly, monitoring of erosion control works should be completed following any flooding event to ensure that erosion control blankets and plantings are not compromised as a result of the event. The inspection and monitoring should be completed by an engineer, environmental inspector, or representative of Aquafor Beech Ltd.

Timing – Construction timing is restricted for fisheries protection. The Indian River provides habitat to both spring and fall spawning species. As such, no in-water works may occur between October 1 to July 15 of any given year to respect spring and fall spawning species for the MNR Southern Region. All tree removals on the site must take place outside of the period from April 1 to September 30, which is inclusive of the typical bird nesting season (April 1 to August 31) and the typical maternity roost season (April 1 - September 30).

Fish Removal – An initial fish rescue will be required once the in-water work area has been isolated; the fish rescue will be completed prior to dewatering the work area. Subsequent fish rescues will be required if the coffer dam isolating the work area is overtopped by high flows in the river. The contractor will be responsible for coordinating with the qualified aquatic biologist for fish rescues.

Construction Methodology – The channel bank and bed works must be undertaken in the dry. Dry working conditions will be created by blocking the perimeter of the work zone with coffer dams and routing the water

around the work zone (dam and flume techniques). Additional precautions and procedures, specified in the detailed drawings, include:

- All practical measures will be implemented to maintain the work zone in good condition;
- Utilities will be located and protected;
- Equipment refuelling will take place in the designated staging area, a minimum of 30 m from the watercourse; and
- All erosion and sediment control measures will be maintained in good working order.

Site Access – Access for construction is proposed from Eganville Road. The access routes are shown on Sheet 5 of the drawing set. A staging and storage area has also been shown. A section of the guard rail along Eganville Road is to be removed prior construction to facilitate site access, and is to be replaced upon completion of construction. Any changes to the access routes or staging area locations must be approved by the City and the field engineer.

Vegetation – To minimize the rate of erosion, it is desirable to establish vegetation quickly where it has been specified. Potted shrubs, potted trees, and a native seed mix (to be applied by Terraseeding) will be used to restore the site. Onsite consideration should be given to the season and prevailing light conditions for planting. If construction occurs after October, plantings should be completed as soon as possible in the following spring season.

8 CONSTRUCTION COST ESTIMATION

Preliminary construction costs have been estimated based on a schedule of quantities from the detailed design presented here. The construction cost estimate is \$220,386 which includes a 20% contingency but is exclusive of HST. The detailed schedule of quantities showing the breakdown of costs is provided on the following page in **Table 8-1**.

Table 8-1: Construction Cost Estimate for Reconstruction of Outfall 41

	PEMBROKE OUTLETS - OUTLET # 41 City of Pembroke				
	City of I think of t				
Item	Description	Qty	Unit	Unit Price	Extended Price (Excl. HST)
	Section "A" – Site Preparation & Remova	ls			
1	Bonds and Insurance	1	LS		\$0
2	Field Office	1	LS		\$0
3	Construction Layout, Utility & Locates	1	LS	\$10,000	\$10,000
4	Mobilization & Demobilization	1	LS	\$10,000	\$10,000
5	Access Route, Mud Mat & Staging Areas	1	LS	\$20,000	\$10,000
6	Clearing, Grubbing, and Vegetation Removal	1	LS	\$25,000	\$25,000
7	Supply, Install & Remove Temporary Erosion & Sediment Control Fence	65	m	\$20	\$1,300
8	Supply, Install & Remove Temporary Construction Fence	60	m	\$15	\$900
9	Stream Control, Bypass Pumping & Dewatering	1	LS	\$15,000	\$15,000
10	MNRF Fish Collection Permit and Fish Rescues	1	LS	\$5,000	\$5,000
11	Removal & Disposal of Concrete Headwall and Excess Pipe	1	LS	\$20,000	\$20,000
	Subtotal Section A (Excl of HST)				\$97,200
	Section "B" – Sewer Works, Channel Works and	Restor	ation		
12	Excavate, Earthwork, Grading & Disposal of Materials	1	LS	\$10,000	\$10,000
13	Supply & Placement of Angular Channel Substrate	35	tonne	\$200	\$7,000
14	Supply & Placement of Concrete Headwall	1	ea	\$12,000	\$12,000
15	Supply & Placement of Vegetated Buttress				
	Roundtstone as specified	75	tonne	\$200	\$15,000
	Topsoil to enhance vegetation	15	m ³	\$50	\$750
	Stock Plantings (2 gal potted @ 0.5 spacing)				
	i) Red-osier Dogwood	8	ea	\$45	\$360
	ii) Slender Willow	8	ea	\$45	\$360
	iii) Nannyberry	8	ea	\$45	\$360
	iv) Narrow-Leaved Meadows weet	8	ea	\$45	\$360
16	Supply & Placement of Erosion Control Blanket - Coir Mat	90	m ²	\$8	\$720
17	Supply & Placement of Topsoil for Restoration (300mm for terraseed area & 150mm for Sod)	75	m³	\$50	\$3,750
18	Supply & Application of Terraseed Mixture	90	m ²	\$8	\$720
19	Supply & Application of Sod	295	m ²	\$10	\$2,950
20	Supply & Planting of Trees (5 gal potted @ min 2.5m spacing)				
	ii) White Spruce	5	ea	\$250	\$1,250
	ii) Eastern White Cedar	5	ea	\$250	\$1,250
	iii) Basswood	5	ea	\$250	\$1,250
21	Supply & Planting of Shrubs (2 gal potted @ 1m spacing)				
	i) Round Leaved Dogwood	15	ea	\$45	\$675
	ii) Chokecherry	15	ea	\$45	\$675
	iii) Narrow-Leaved Meadows weet	15	ea	\$45	\$675
	iv) Downy juneberry	15	ea	\$45	\$675
	v) Northern Fly Honeysuckle	15	ea	\$45	\$675
	Subtotal Section B (Excl of HST)				\$61,455

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089

Branch Office:

55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

	Section "C" – Provisional				
22	Replace/ Repair Concrete Sidewalk, Curb & Sod	1	LS	\$15,000	\$15,000
23	Migratory Nesting Bird Survey	1	LS	\$5,000	\$5,000
24	Retain Certified Arborist	1	LS	\$5,000	\$5,000
	Subtotal Section C (Excl of HST)				\$25,000
	Section "D" – Contingency				
25	Contingency (20%)	1	LS	\$36,731	\$36,731
	Subtotal Section D (Excl of HST)				\$36,731
	Section "A" – Site Preparation & Removals				\$97,200
	Section "B" - Sewer Works, Channel Works and Restoration				\$61,455
	Section "C" - Provisional				\$25,000
	Section "D" – Contingency				\$36,731
	Sub Total (Exc of taxes)				\$220,386
	HST @ 13%				\$28,650
	Total Bid Price (Incl of taxes)				\$249,036
	Outlet # 41 Engineering Estimate (Inc. Contingency, Exc.	HST)			\$220,38

9 REFERENCES

Natural Resources Canada (2021). Plant hardiness of Canada. Retrieved from http://planthardiness.gc.ca/

Department of Fisheries and Oceans. (2021). Projects near water. Retrieved from Fisheries and Oceans Canada: http://www.dfo-mpo.gc.ca/pnw-ppe/index-eng.html

10 SIGNATURES

This project is being completed with input from the following consulting staff:

5B2

Dave Maunder – Project Manager Robert Amos – Water Resources Lead Golmar Golmohammadi – Water Resources Engineer Gabriel Dubé – Water Resources Specialist Yun Xia – Water Resources Specialist Palka Sharma – CAD Technician Julie Scott – Terrestrial Ecologist Jakub Ripley – GIS Specialist Darcy LaFramboise – Certified Arborist Graham Eby – Aquatic Biologist

Upon your review, should you have any questions or comments, please do not hesitate to contact the undersigned.

Head Office:	
2600 Skymark Ave,	Building 6, Suite 202, L4W
TOIL 005 420 0000	Eax. 905 629 0089

April 1st, 2022

claved Maunder

Dave Maunder, M.Sc., P.Eng Project Manager Aquafor Beech Limited

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 13

www.aquaforbeech.com

April 1st, 2022

Technical Memo for Design and Reconstruction of Storm Sewer Outfall 42

1 INTRODUCTION

As part of the City-Wide Flood Risk Assessment and Storm Outlet Review, the City of Pembroke has requested an assessment of the condition on 17 of the City's storm sewer outfalls, complete with an inventory of the findings. After conducting the outfall assessment, Aquafor Beech reported a total of 9 outfalls in poor condition and in need of repair. The following Technical Memo provides an overview of the existing conditions of Outfall 42 as well as the Detailed Design of the proposed outfall reconstruction.

The study area and location of Outfall 42 are shown in **Figure 1-1**. The storm sewer has a diameter of 600 mm that extends off of Everett Street, outletting into a 30 m long outfall channel that discharges into an outside bend of the Indian River, approximately 410 m upstream of the confluence with the Muskrat River. Outfall 42 was identified to be in need of rehabilitation and was ranked as the 7th highest priority site, of the total 17 sites that were assessed.

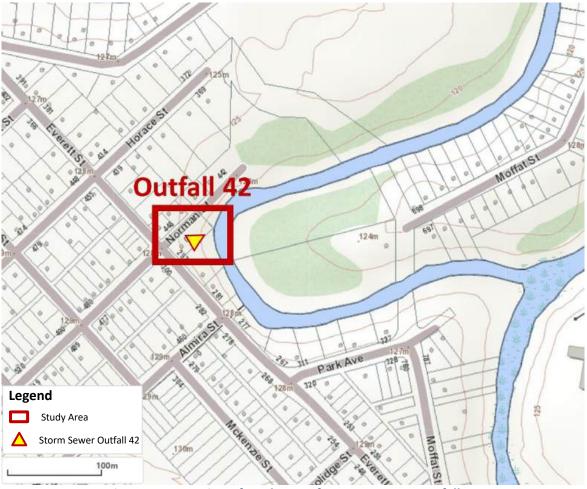


Figure 1-1: Location of Study Area for Storm Sewer Outfall 42

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

April 1st, 2022

2 EXISTING CONDITIONS

2.1 Overview

The existing outfall structure consists of a 600 mm concrete sewer pipe, a concrete headwall, and failed concrete wingwalls (Figure 2-1). The sewer pipe outlets into a 30 m long outfall channel (Figure 2-2), with substantial bank erosion and downcutting noted at the downstream extents of the channel (Figure 2-3 and Figure 2-4). Channel gradient is very high throughout the study area, having an average of 19% between the outlet and the Indian River.

Figure 2-1: Concrete Pipe Outlet with Headwall and Failed Wingwalls

Figure 2-2: Outlet and Upstream Extents of the Outfall Channel

Figure 2-3: Erosion at the Downstream Extents of the Outfall Channel (Looking Downstream)

Figure 2-4: Erosion at the Downstream Extents of the Outfall Channel (Looking Upstream)

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089

Branch Office: 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 2

www.aquaforbeech.com

2.2 Topographic Survey

A detailed topographic survey was completed from November 8th to November 19th in 2021 to record existing site conditions. Sufficient detail was captured to support the detailed design of the outfall reconstruction. Key parameters captured during the survey include:

- Longitudinal profile of the ground surface above the storm sewer pipe;
- Survey points to characterize the outfall channel (cross-sections, thalweg, top-of-bank, etc.), extending into the Indian River to capture streambed tie-in elevations;
- Any visible storm sewer infrastructure near the outlet (invert and obvert, headwall, etc.);
- Top and bottom of bank elevations along the Indian River, extending approximately 5-10 m upstream and downstream of the confluence with the outfall channel; and
- Additional ground shots within the outfall channel to capture erosion.

The survey was completed using a high-precision GPS instrument that was referenced to the NAD83 UTM Zone 18N horizontal coordinate system and the CGVD2013 vertical datum. A DEM derived from LiDAR data collected between 2019-2020 by Natural Resources Canada was used to complement the topographic survey data, allowing for elevations to be determined beyond the extents of the survey.

2.3 Geotechnical Investigation

A detailed geotechnical investigation was undertaken by GEMTEC within the study area on February 16th, 2022. The assessment was intended to define and characterize the subsurface soil conditions, inform the design of the proposed outfall reconstruction, and make recommendations regarding slope stabilization measures. One (1) borehole designated as 22-04 was advanced to a depth of 10.2 m below grade portable drilling equipment.

Soil samples were obtained at regular intervals in the overburden soils with a 51 mm diameter Standard Penetration Test split-spoon sample. This was done in accordance with ASTM Standard D-1586, which provides the penetration resistance (N-value) of the soils. Soil samples were examined in the field for type, texture and colour to classify each soil layer identified. The samples were sealed in air tight plastic bags and transferred to GEMTEC's laboratory for further examination and selection of appropriate samples for laboratory testing. In situ vane shear testing was carried out in the borehole to measure the undrained shear strength of the silty clay deposits. Dynamic cone penetration testing (DCPT) was also carried out in this borehole. The results of the geotechnical investigation, along with a borehole location plan, are included in **Appendix I**.

Fill material was encountered at the surface of the borehole, extending to 1.2 m below surface grade. The fill consisted of dark brown sand and silt with some gravel. The fill material was underlain by native deposits of clayey sand (1.8 m thick), clayey silt (1.8 m thick), silty clay (1.5 m thick), and glacial till primarily composed of clayey sand and silt with some gravel (extending to the sampling termination depth at 7.0 m below surface grade). The borehole was further advanced by means of a DCPT and terminated at a depth of about 10.2 m due to refusal within the inferred glacial till on cobbles or boulders. Blow counts recorded during the DCPT test ranged from 14 to 58 blows per 300 mm. Based on soil sample appearance, the groundwater level was estimated to be at approximately 4.9 m below surface grade at the time of the investigation.

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

2.4 Tree Inventory

A comprehensive tree inventory was undertaken in the Outfall 42 study area in February, 2022 to identify trees that may potentially be removed or damaged to accommodate construction activities. A total of 11 trees were inventoried in the study area, including at any potentially suitable access and staging areas. Sheet 6 in the detailed design drawings shows the locations of the surveyed trees within the Outfall 42 study area. **Table 2-1** provides a summary of the tree inventory results by species.

Tag #	Species Common Name	Species Botanical Name	Condition
835	Manitoba Maple	Acer negundo	Fair-Good
836	Manitoba Maple	Acer negundo	Good
837	Manitoba Maple	Acer negundo	Good
838	Manitoba Maple	Acer negundo	Good
839	Manitoba Maple	Acer negundo	Fair
840	Manitoba Maple	Acer negundo	Good
841	Manitoba Maple	Acer negundo	Good
842	Manitoba Maple	Acer negundo	Good
843	White Ash	Fraxinus americana	Fair
844	White Elm	Ulmus americana	Good
845	White Ash	Fraxinus americana	Fair-Good(26), Fair(20)

Table 2-1: Tree Inventory Summary by Species

3 DESIGN FACTORS

At the outset of the design process, all opportunities, constraints, and considerations for the reconstruction of Outfall 42 were identified. This ensured that they were adequately considered during development of the detailed design. Constraints and considerations identified within the study area were as follows:

Disturbance to Terrestrial Vegetation – Some of the trees and other vegetation located within the study area may be harmed or removed during construction. However, space allowing, any mature trees that are required for removal to facilitate construction will be compensated with trees plantings at a 3:1 ratio, along with 5 shrubs planted for every 1 tree planted. If there is insufficient space near the study area to meet this replanting target, trees will be planted at a minimum 1:1 ratio, with 5 shrubs planted for every 1 tree planted. Tree species selection will be based on their nativity within the City of Pembroke, and seed mix composition will reflect typical vegetation found within Plant Hardiness Zone 4b (Natural Resources Canada, 2021).

Utilities – In addition to the storm sewer infrastructure identified during the background review of base mapping provided by the City, Aquafor has also completed an Ontario One Call utility locate request for the entire site identify all other utilities and any potential design conflicts.

Channel Bank Stabilization – Toe erosion and slope failures should be restored by regrading to attain a natural long-term stable slope, followed by the application of channel bank and toe erosion protection.

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089

Upstream and Downstream Tie-In Points – Care must be taken to ensure that there is a smooth transition into, and out of, the proposed outfall design, such that the stability of the slope and channel banks are not compromised.

Outlet Protection – The design should consider appropriate protection to prevent erosion and scouring damage to the pipe, structures and associated channel works.

4 DETAILED DESIGN

4.1 Principal Design Components

Detailed design drawings for Outfall 42 are provided under a separate cover. Due to the presence of a very high gradient (19%) between the existing outlet and the Indian River, the design proposes to reduce stormwater velocity by extending the storm sewer with 600 mm PVC pipes and incorporating a 1500 mm maintenance hole with an internal 8.5 m deep (300 mm diam.) PVC drop structure. A second maintenance hole having a diameter of 1200 mm is also proposed 7 m downstream of the first maintenance hole. A 3 m wide swale lined with rip-rap is to be constructed overtop the proposed pipe extension, with the intent of directing accumulated overland flow into the Indian River and protecting the sewer infrastructure from erosion.

The pipe outlet is to be located above water surface elevations that occur during frequent flow events within the Indian River. A 12 m long runoff channel consisting of 750 mm deep angular stone is to be constructed at the pipe outlet to prevent scouring near the confluence with the river. In addition, a concrete headwall is specified to mitigate erosion near the outlet pipe and prevent scouring of the slope, and to allow for a stable confluence of the outfall channel with the Indian River.

Specific elements of the design and construction include removing the existing concrete headwall and 4.6 m of the storm pipe to enable. Slopes along the existing outfall channel are to be regraded and vegetated with native riparian seed mix, trees, and shrubs, which are intended to provide additional slope stability and resist erosion from overland flow during extreme storm events. A vegetated buttress having a total length of ~8 m is proposed in order to provide bank protection near the confluence of the runoff channel with the Indian River.

4.2 Wildlife Mitigation Measures

4.2.1 Breeding Birds

Tree removals should occur outside of the bird nesting window (generally April 1st to August 31st) to ensure that active nests of protected species are not harmed or destroyed and that the project is compliant with the *Migratory Birds Convention Act*. Individual trees or areas of low-complexity habitat could potentially be removed during the nesting window following an inspection to confirm the absence of active nesting in the area. However, this method is not recommended for complex habitats (e.g., mature woodland) due to the low detectability of nests in such areas, and is further not permitted if a restriction is placed on tree removal due to SAR bat habitat.

April 1st, 2022

4.2.2 Bat Maternity Roosts

The active window for Ontario's SAR bats extends from April 1st to September 30th. The study area is inclusive of potential SAR bat habitat, and as such, tree removal is prohibited during this period.

4.2.3 In-Water Works Timing Windows and Fisheries Act

Discussions with MNRF (personal communication, March 15, 2022) confirmed that the Indian River provides habitat to both spring and fall spawning species. As a major watercourse, the Indian River contains fish at any time during any given year. Thus, no in-water works may occur between October 1 to July 15 of any given year to avoid works within the spring and fall spawning windows for the MNR Southern Region (March 15 - July 15 and October 1 - May 21, respectively).

4.2.4 DFO Self-assessment

The federal *Fisheries Act* requires that projects avoid causing the death of fish and the harmful alteration, disruption or destruction of fish habitat unless authorized by the Minister of Fisheries and Oceans Canada (DFO). This applies to work being conducted in or near waterbodies that support fish at any time during any given year or are connected to waterbodies that support fish at any time during any given year. As noted above, the study area does contain fish at any time during any given year. Therefore, the *Fisheries Act* applies to works conducted in or near water at the site.

As the proposed works include minor regrading and rock placement within the high-water mark of the channel, Aquafor will undertake a request for regulatory review under the federal *Fisheries Act*.

4.3 Vegetation Removals and Restoration

A detailed restoration plan is shown on Sheet 7 of the design drawings. As soon as possible following construction, all disturbed areas should be revegetated through application of an annual cover crop and native herbaceous seed mix in areas of disturbance. Native seed mix should include wildflowers (preferably including milkweed species) to promote wildlife habitat. Terraseeding is the preferred application to hydroseeding. The recommended annual cover crop consists of Canada Wild Rye (*Elymus canadensis*) (40%) and Annual Oats (*Avena sativa*) (60%) applied at a rate of 33 kg/ha. after the risk of frost (i.e., after March 31 and before October 31); if applied during the time of frost risk, the cover crop should be 100% Annual Oats at a rate of 33kg/ha.

In addition, interplanting with native trees and shrubs is recommended within the coastal floodplain where appropriate. Restoration within disturbed areas should be in keeping with existing communities, and interplanting should utilize vegetation appropriate to the target community. Such interplanting will aid in stabilizing the banks and will also enhance habitat for wildlife and aquatic species.

All species selected should be native, suitable to the site conditions, and reflect the diversity of species commonly found in local natural areas. Based on native species within Pembroke and the site's location within Plant Hardiness Zone 4b, suggested species and sizes are listed in **Table 4-1**, **Table 4-2**, and **Table 4-3**.

April 1st, 2022

	Table 4-1: Native Seed Mixes	
Scientific Name	Common Name	% by Weight
Nurse Crop Mix (Application Rate:	33 kg/ha)	
Elymus canadensis	Canada Wild Rye	40%
Avena sativa	Annual Oats	60%
Riparian Mix (Application Rate: 25	kg/ha)	
Anemonastrum canadensis	Canada Anemone	1%
Apocynum cannibinum	Indian-hemp Dogbane	5%
Asclepias incarnata ssp. incarnata	Swamp Milkweed	5%
Bidens cernua	Nodding Beggarticks	2%
Bidens frondose	Devil's Beggarticks	2%
Carex granularis	Meadow/Open Field Sedge	20%
Clematis viginiana	Virgin's Bower	4%
Elymus virginicus var. virginicus	Virginia Wild Rye	10%
Euthamia graminifolia	Grass-leaved Goldenrod	5%
Juncus dudleyi	Dudley's Rush	10%
Poa palustris	Fowl Bluegrass	25%
Solidago canadensis	Canada Goldenrod	4%
Symphyotrichum novae-angliae	New England Aster	1%
Symphyotrichum puniceum	Purple Stemmed Aster	1%
Verbena hastata	Blue Vervain	5%

Table 4-2: Native Tree Plantings

Scientific Name	Common Name	Amount	Size
Acer rubrum	Red Maple	6	5 gal. potted
Quercus macrocarpa	Bur Oak	6	5 gal. potted
Thuja occidentalis	Eastern White Cedar	6	5 gal. potted
Tilia americana	Basswood	6	5 gal. potted

Head Office:

Branch Office: 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Scientific Name	Common Name	Amount	Size
Restoration Plantings		-	·
Amelanchier arborea	Downy Juneberry	18	2 gal. potted
Cornus alternifolia	Alternate-leaved Dogwood	18	2 gal. potted
Cornus rugosa	Round-leaved Dogwood	18	2 gal. potted
Lonicera canadensis	Northern Fly Honeysuckle	18	2 gal. potted
Prunus virginiana	Chokecherry	16	2 gal. potted
Rubus ideaus	Wild Red Raspberry	16	2 gal. potted
Sambucus racemosa	Red-berried Elder	16	2 gal. potted
Vegetated Buttress Plantings			
Cornus sericea	Red-osier Dogwood	5	2 gal. potted
Salix petiolaris	Slender Willow	5	2 gal. potted
Spirea alba	Narrow-leaved Meadowsweet	5	2 gal. potted
Viburnum lentago	Nannyberry	5	2 gal. potted

Table 4-3: Native Shrub Plantings

4.3.1 Removal Timing Window and Protection Measures

It will be necessary to remove some trees and other vegetation to facilitate the proposed works. Of the 11 live trees identified during the assessment (detailed previously in **Table 2-1**), 8 have been identified for removal. Trees identified for removal are listed in **Table 4-4** below and are shown on Sheet 6 of the detailed design drawings. Tree removals on the site should take place outside of the typical bird nesting and bat maternity roost season (collectively April 1 to September 30).

Construction activities can have adverse effects on nearby trees that are to remain in place and should not be disturbed by the proposed works. Tree protections measures, consisting of page wire hoarding specified on Sheet 5 of the detailed design drawings, should be followed in order to mitigate against potential damages.

Tag #	Species Common Name	Species Botanical Name	Condition
835	Manitoba Maple	Acer negundo	Fair-Good
836	Manitoba Maple	Acer negundo	Good
837	Manitoba Maple	Acer negundo	Good
839	Manitoba Maple	Acer negundo	Fair
842	Manitoba Maple	Acer negundo	Good
843	White Ash	Fraxinus americana	Fair
844	White Elm	Ulmus americana	Good
845	White Ash	Fraxinus americana	Fair-Good(26), Fair(20)

Table 4-4: Trees Identified for Removal

Head Office:

5 EASEMENT REQUIREMENTS

Aquafor was provided the property fabric by the City of Pembroke on March 7, 2022. In all cases, an OLS should be retained to confirm property parcels and associated limits. In some cases, it may be necessary to require temporary or permanent easements.

6 PERMITS AND APPROVALS

6.1 MNRF Fish Collection Permit

As de-watering will be required to accommodate construction, a fish rescue must be conducted. It will therefore be necessary to obtain a fish collection permit from the MNRF prior to construction. In addition, the dewatering and fish rescue must be conducted in accordance with MNRF timing windows to reduce harm to aquatic species, with no in-water works occurring between October 1 to July 15 (as discussed in **Section 4.2.3**). In the event that the work area becomes inundated following a significant rainfall event, fish rescues will be required prior to continuing instream works.

6.2 Provincial Species at Risk – MECP 17(2) (b/c) Species at Risk Permit

Prior to implementation, the study area should be subject to a Species at Risk (SAR) screening to identify any potential conflicts and ensure compliance with applicable legislation. Screening should be completed by consulting background information and agencies (MECP) to identify potential species associations, and assessing the potential for those species to occur in the study area based on their habitat requirements as compared to the habitat present on site. Mitigation measures to prevent or minimize impacts to species should be developed. If endangered or threatened species will potentially be impacted by the project, an Information Gathering Form (IGF) should be prepared and submitted to the MECP so that they may review the project and advise on requirements under the *Endangered Species Act*. Such requirements may include: implementation of additional mitigation measures as specified by MECP; registering the project via a Notice of Activity under a regulatory exemption; or preparation of an Overall Benefit Permit (OBP) package to address impacts to protected species or habitat. Please note that the review period for an OBP, if such is required, is currently estimated at nine months to one year.

6.3 Department of Fisheries and Oceans Request for Review

As noted in **Section 4.2.4**, the detailed design will be submitted to DFO for review under the federal *Fisheries Act*.

7 CONSTRUCTION REQUIREMENTS

Construction Supervision – To ensure that the objectives of the outfall rehabilitation design are realized, it is important that someone with experience in channel design and restoration be part of the construction supervision (i.e., a qualified professional or representative of Aquafor Beech Ltd.). The supervision will enable construction issues to be addressed quickly and appropriately and ensure that important design details such as those listed below are implemented:

- Implementation of functional erosion and sediment control measures, including dewatering and pumping procedures;
- Removal of existing vegetation within, and protection of vegetation in close proximity to, the works area and access route;
- Confirmation of stone size gradation;
- Construction of an appropriate transition at the upstream and downstream tie-in points; and
- Restoration planting of native shrubs and trees, and Terraseeding of native seed mix.

Erosion and Sediment Control Measures – Erosion protection shall be used on regraded banks to provide erosion protection prior to the establishment of a vegetative cover.

Inspection of ESC measures should be completed regularly during the construction process to ensure that erosion and sediment control measures are functioning as intended and to address any immediate concerns. Similarly, monitoring of erosion control works should be completed following any flooding event to ensure that erosion control blankets and plantings are not compromised as a result of the event. The inspection and monitoring should be completed by an engineer, environmental inspector, or representative of Aquafor Beech Ltd.

Timing – Construction timing is restricted for fisheries protection. The Indian River provides habitat to both spring and fall spawning species. As such, no in-water works may occur between October 1 to July 15 of any given year to respect spring and fall spawning species for the MNR Southern Region. All tree removals on the site must take place outside of the period from April 1 to September 30, which is inclusive of the typical bird nesting season (April 1 to August 31) and the typical maternity roost season (April 1 - September 30).

Fish Removal – An initial fish rescue will be required once the in-water work area has been isolated; the fish rescue will be completed prior to dewatering the work area. Subsequent fish rescues will be required if the coffer dam isolating the work area is overtopped by high flows in the river. The contractor will be responsible for coordinating with the qualified aquatic biologist for fish rescues.

Construction Methodology – The channel bank and bed works must be undertaken in the dry. Dry working conditions will be created by blocking the perimeter of the work zone with coffer dams and routing the water around the work zone (dam and flume techniques). Additional precautions and procedures, specified in the detailed drawings, include:

- All practical measures will be implemented to maintain the work zone in good condition;
- Utilities will be located and protected;
- Equipment refuelling will take place in the designated staging area, a minimum of 30 m from the watercourse; and
- All erosion and sediment control measures will be maintained in good working order.

Site Access – Access routes are shown on Sheet 6 of the drawing set, along with a staging and storage area. Access for construction is proposed from Everett Street, which will require temporary lane closure. A cedar hedge is to be removed prior construction to facilitate site access. Any changes to the access routes or staging area locations must be approved by the City and the field engineer.

Vegetation – To minimize the rate of erosion, it is desirable to establish vegetation quickly where it has been specified. Potted shrubs, potted trees, and a native seed mix (to be applied by Terraseeding) will be used to restore the site. Onsite consideration should be given to the season and prevailing light conditions for planting.

If construction occurs after October, plantings should be completed as soon as possible in the following spring season.

8 CONSTRUCTION COST ESTIMATION

Preliminary construction costs have been estimated based on a schedule of quantities from the detailed design presented here. The construction cost estimate is \$460,230 which includes a 20% contingency but is exclusive of HST. The detailed schedule of quantities showing the breakdown of costs is provided on the following page in **Table 8-1**.

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 11

www.aquaforbeech.com

Table 8-1: Construction Cost Estimate for Reconstruction of Outfall 42

	PEMBROKE OUTLETS - OUTLET # 42	2			
	City of Pembroke				
Item	Description	Qty	Unit	Unit Price	Extended Price (Exc HST)
	Section "A" – Site Preparation & Remov	als			
1	Bonds and Insurance	1	LS	\$12,000	\$12,000
2	Field Office	1	LS	\$3,000	\$3,000
3	Construction Layout, Utility & Locates	1	LS	\$10,000	\$10,000
4	Mobilization & Demobilization	1	LS	\$10,000	\$10,000
5	Access Route, Mud Mat & Staging Areas	1	LS	\$20,000	\$10,000
6	Clearing, Grubbing, and Vegetation Removal	1	LS	\$25,000	\$25,000
7	Supply, Install & Remove Temporary Erosion & Sediment Control Fence	90	m	\$20	\$1,800
8	Supply, Install & Remove Temporary Construction Fence	25	m	\$15	\$375
9	Stream Control, Bypass Pumping & Dewatering	1	LS	\$15,000	\$15,000
10	MNRF Fish Collection Permit and Fish Rescues	1	LS	\$5,000	\$5,000
11	Removal & Disposal of Concrete Headwall and Excess Pipe	1	LS	\$15,000	\$15,000
	Subtotal Section A (Excl of HST)				\$107,175
	Section "B" – Sewer Works, Channel Works and	Resto	ration		
12	Excavate, Earthwork, Grading & Disposal of Materials	1	LS	\$40,000	\$40,000
13	Supply & Placement of Angular Channel Substrate	320	tonne	\$200	\$64,000
14	Supply & Placement of Concrete Headwall	1	ea	\$15,000	\$15,000
14	Supply & Placement of 600mm dia. PVC pipe including joint restraints	25.7	m	\$2,500	\$64,250
15	Supply & Placement of 1200mm dia. Maintenance Hole including Watertight Frame Cover	1	ea	\$15,000	\$15,000
15	Supply & Placement of 1500mm dia. Maintenance Hole including 300mm dia. Drop pipe andWatertight Frame Cover	1	ea	\$25,000	\$25,000
15	Supply & Placement of Vegetated Buttress				
-	Roundtstone as specified	50	tonne	\$200	\$10,000
	Topsoil to enhance vegetation	10	m ³	\$50	\$500
	Stock Plantings (2 gal potted @ 0.5 spacing)	-			
	i) Red-osier Dogwood	5	ea	\$45	\$225
	ii) Slender Willow	5	ea	\$45	\$225
	iii) Nannyberry	5	ea	\$45	\$225
	iv) Narrow-Leaved Meadowsweet	5	ea	\$45	\$225
16	Supply & Placement of Erosion Control Blanket - Coir Mat	125	m ²	\$8	\$1,000
17	Supply & Placement of Topsoil for Restoration (300mm for terraseed area & 150mm for Sod)	55	m ³	\$50	\$2,750
18	Supply & Application of Terraseed Mixture	125	m ²	\$8	\$1,000
19	Supply & Application of Sod	55	m ²	\$10	\$550
20	Supply & Planting of Trees (5 gal potted @ min 2.5m spacing)				
-	ii) Red Maple	6	ea	\$250	\$1,500
	ii) Bur Oak	6	ea	\$250	\$1,500
	iii) Eastern White Cedar	6	ea	\$250	\$1,500
	iv) Basswood	6	ea	\$250	\$1,500

April 1st, 2022

1	Supply & Planting of Shrubs (2 gal potted @ 1m spacing)				
	i) Round Leaved Dogwood	18	ea	\$45	\$810
	ii) Chokecherry	16	ea	\$45	\$720
	iii) Alternate Leaved Dogwood	18	ea	\$45	\$810
	iv) Downy juneberry	18	ea	\$45	\$810
	v) Northern Fly Honeysuckle	18	ea	\$45	\$810
	vi) Wild Red Raspberry	16	ea	\$45	\$720
	vii) Red-berried Elder	16	ea	\$45	\$720
	Subtotal Section B (Excl of HST)				\$251,350
	Section "C" – Provisional				
22	Replace/ Repair Asphalt Road	1	LS	\$15,000	\$15,000
23	Migratory Nesting Bird Survey	1	LS	\$5,000	\$5,000
24	Retain Certified Arborist	1	LS	\$5,000	\$5,000
	Subtotal Section C (Excl of HST)				\$25,000
	Section "D" – Contingency				
25	Contingency (20%)	1	LS	\$76,705	\$76,705
	Subtotal Section D (Excl of HST)	i			\$76,705
	Section "A" – Site Preparation & Removals				\$107,175
	Section "B" – Sewer Works, Channel Works and Restoration				\$251,350
	Section "C" – Provisional				\$25,000
	Section "D" – Contingency				\$76,705
	Sub Total (Exc of taxes)				\$460,230
	HST @ 13%				\$59,830
	Total Bid Price (Incl of taxes)				\$520,060

9 **REFERENCES**

Natural Resources Canada (2021). Plant hardiness of Canada. Retrieved from http://planthardiness.gc.ca/

Department of Fisheries and Oceans. (2021). Projects near water. Retrieved from Fisheries and Oceans Canada: http://www.dfo-mpo.gc.ca/pnw-ppe/index-eng.html

10 SIGNATURES

This project is being completed with input from the following consulting staff:

Dave Maunder – Project Manager Robert Amos – Water Resources Lead Golmar Golmohammadi – Water Resources Engineer Gabriel Dubé – Water Resources Specialist Yun Xia – Water Resources Specialist Palka Sharma – CAD Technician Julie Scott – Terrestrial Ecologist

Head Office:

April 1st, 2022

Jakub Ripley – GIS Specialist Darcy LaFramboise – Certified Arborist Graham Eby – Aquatic Biologist

Upon your review, should you have any questions or comments, please do not hesitate to contact the undersigned.

clavel Maunder

Dave Maunder, M.Sc., P.Eng Project Manager Aquafor Beech Limited

April 1st, 2022

Technical Memo for Design and Reconstruction of Storm Sewer Outfall 45

1 INTRODUCTION

As part of the City-Wide Flood Risk Assessment and Storm Outlet Review, the City of Pembroke has requested an assessment of the condition on 17 of the City's storm sewer outfalls, complete with an inventory of the findings. After conducting the outfall assessment, Aquafor Beech reported a total of 9 outfalls in poor condition and in need of repair. The following Technical Memo provides an overview of the existing conditions of Outfall 45 as well as the Detailed Design of the proposed outfall reconstruction.

The study area and location of Outfall 45 are shown in **Figure 1-1**. The storm sewer has a diameter of 200 mm and extends off of the corner joining McGee Street East to Doran Street, outletting into the Indian River. Outfall 45 was identified to be in need of rehabilitation and was ranked as the 6th highest priority site, of the total 17 sites that were assessed.

Figure 1-1: Location of Study Area for Storm Sewer Outfall 45

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 1

www.aquaforbeech.com

April 1st, 2022

2 EXISTING CONDITIONS

2.1 Overview

Outfall 45 consists of a 200 mm concrete sewer pipe that has failed at the downstream-most pipe joint, creating a 30 cm gap between the detached pipe segment and the upstream pipe (Figure 2-1 and Figure 2-2). The concrete pipe upstream of the failed joint remains in good condition (Figure 2-3), though it is recessed into the channel bank, with scouring noted near the outlet (Figure 2-4). There is also evidence of bank erosion near the outfall (Figure 2-1 and Figure 2-2), which has steeped the bank in this area and created a near-vertical slope.

Figure 2-1: Detached Concrete Pipe Segment

Figure 2-2: Close-up Photo of the Detached Concrete Pipe Segment

Figure 2-3: Close-up Photo of the Recessed Concrete Pipe Outlet

Figure 2-4: Scouring at Recessed Concrete Pipe Outlet

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 2

www.aquaforbeech.com

2.2 Topographic Survey

A detailed topographic survey was completed from November 8th to November 19th in 2021 to record existing site conditions. Sufficient detail was captured to support the detailed design of the outfall reconstruction. Key parameters captured during the survey include:

- Longitudinal profile of the ground surface above the storm sewer pipe, extending into the Indian River to capture streambed tie-in elevations;
- Any visible storm sewer infrastructure near the outlet (invert and obvert, exposed pipe, etc.);
- Upstream maintenance hole lid and pipe invert; and
- Top and bottom of bank elevations approximately 5-10 m upstream and downstream of the storm sewer outfall.

The survey was completed using a high-precision GPS instrument that was referenced to the NAD83 UTM Zone 18N horizontal coordinate system and the CGVD2013 vertical datum. A DEM derived from LiDAR data collected between 2019-2020 by Natural Resources Canada was used to complement the topographic survey data, allowing for elevations to be determined beyond the extents of the survey.

2.3 Geotechnical Investigation

A detailed geotechnical investigation was undertaken by GEMTEC within the study area on February 15th, 2022. The assessment was intended to define and characterize the subsurface soil conditions, inform the design of the proposed outfall reconstruction, and make recommendations regarding slope stabilization measures. One (1) borehole designated as 22-07 was advanced to a depth of 4.6 m below grade using portable drilling equipment.

Soil samples were obtained at regular intervals in the overburden soils with a 51 mm diameter Standard Penetration Test split-spoon sample. This was done in accordance with ASTM Standard D-1586, which provides the penetration resistance (N-value) of the soils. Soil samples were examined in the field for type, texture and colour to classify each soil layer identified. The samples were sealed in air tight plastic bags and transferred to GEMTEC's laboratory for further examination and selection of appropriate samples for laboratory testing. The results of the geotechnical investigation, along with a borehole location plan, are included in **Appendix I**.

Fill material was encountered at the surface of the borehole, extending to 1.0 m below surface grade. The fill was composed of dark brown to brown sand with some silt and trace gravel. The fill material was underlain by native deposits of silty sand with trace gravel (2.7 m thick) and silty clay (extending to the termination depth of the borehole). Based on soil sample appearance, the groundwater level was estimated to be at approximately 2.3 m below surface grade at the time of the investigation.

2.4 Tree Inventory

A comprehensive tree inventory was undertaken in the Outfall 45 study area in February, 2022 to identify trees that may potentially be removed or damaged to accommodate construction activities. A total of 14 trees were inventoried in the study area, including at any potentially suitable access and staging areas. Sheet 5 in the detailed design drawings shows the locations of the surveyed trees within the Outfall 45 study area. **Table 2-1** provides a summary of the tree inventory results by species.

April 1st, 2022

Tag #	Species Common Name	Species Botanical Name	Condition
809	Manitoba Maple	Acer negundo	Good
810	Hybrid Crack Willow	Salix x rubens	Poor
811	Manitoba Maple	Acer negundo	Good
812	White Elm	Ulmus americana	Good
813	White Elm	Ulmus americana	Good
814	Manitoba Maple	Acer negundo	Fair-Good
815	White Ash	Fraxinus americana	Good
816	Manitoba Maple	Acer negundo	Good
817	Manitoba Maple	Acer negundo	Good
818	White Ash	Fraxinus americana	Good
819	Manitoba Maple	Acer negundo	Fair
820	Manitoba Maple	Acer negundo	Fair-Good
821	Manitoba Maple	Acer negundo	Fair
NT1	Manitoba Maple	Acer negundo	Fair-Good

Table 2-1: Tree Inventory Summary by Species

3 DESIGN FACTORS

At the outset of the design process, all opportunities, constraints, and considerations for the reconstruction of Outfall 45 were identified. This ensured that they were adequately considered during development of the detailed design. Constraints and considerations identified within the study area were as follows:

Disturbance to Terrestrial Vegetation – Some of the trees and other vegetation located within the study area may be harmed or removed during construction. However, space allowing, any mature trees that are required for removal to facilitate construction will be compensated with trees plantings at a 3:1 ratio, along with 5 shrubs planted for every 1 tree planted. If there is insufficient space near the study area to meet this replanting target, trees will be planted at a minimum 1:1 ratio, with 5 shrubs planted for every 1 tree planted. Tree species selection will be based on their nativity within the City of Pembroke, and seed mix composition will reflect typical vegetation found within Plant Hardiness Zone 4b (Natural Resources Canada, 2021).

Utilities – In addition to the storm sewer infrastructure identified during the background review of base mapping provided by the City, Aquafor has also completed an Ontario One Call utility locate request for the entire site identify all other utilities and any potential design conflicts.

Channel Bank Stabilization – Toe erosion and slope failures should be restored by regrading to attain a natural long-term stable slope, followed by the application of channel bank and toe erosion protection.

Upstream and Downstream Tie-In Points – Care must be taken to ensure that there is a smooth transition into, and out of, the proposed outfall design, such that the stability of the slope and channel banks are not compromised.

April 1st, 2022

Outlet Protection – The design should consider appropriate protection to prevent erosion and scouring damage to the pipe and associated channel works.

4 DETAILED DESIGN

4.1 Principal Design Components

Detailed design drawings for Outfall 45 are provided under a separate cover. The proposed design consists removing a 3 m section of the existing 200 mm concrete pipe and replacing it with a 2 m concrete pipe segment of the same diameter. The new 2 m pipe segment is to be incorporated into a vegetated buttress having a total length of 14.5 m, which is intended to provide bank protection near the outfall and to prevent exposure of the remaining sewer pipe. This includes cutting back the existing near-vertical bank to accommodate a lower grade of 2H:1V for the proposed vegetated buttress.

4.2 Wildlife Mitigation Measures

4.2.1 Breeding Birds

Tree removals should occur outside of the bird nesting window (generally April 1st to August 31st) to ensure that active nests of protected species are not harmed or destroyed and that the project is compliant with the *Migratory Birds Convention Act*. Individual trees or areas of low-complexity habitat could potentially be removed during the nesting window following an inspection to confirm the absence of active nesting in the area. However, this method is not recommended for complex habitats (e.g., mature woodland) due to the low detectability of nests in such areas, and is further not permitted if a restriction is placed on tree removal due to SAR bat habitat.

4.2.2 Bat Maternity Roosts

The active window for Ontario's SAR bats extends from April 1st to September 30th. The study area is inclusive of potential SAR bat habitat, and as such, tree removal is prohibited during this period.

4.2.3 In-Water Works Timing Windows and Fisheries Act

Discussions with MNRF (personal communication, March 15, 2022) confirmed that the Indian River provides habitat to both spring and fall spawning species. As a major watercourse, the Indian River contains fish at any time during any given year. Thus, no in-water works may occur between October 1 to July 15 of any given year to avoid works within the spring and fall spawning windows for the MNR Southern Region (March 15 - July 15 and October 1 - May 21, respectively).

4.2.4 DFO Self-assessment

The federal *Fisheries Act* requires that projects avoid causing the death of fish and the harmful alteration, disruption or destruction of fish habitat unless authorized by the Minister of Fisheries and Oceans Canada (DFO). This applies to work being conducted in or near waterbodies that support fish at any time during any given year or are connected to waterbodies that support fish at any time during any given year. As noted above, the study

area does contain fish at any time during any given year. Therefore, the *Fisheries Act* applies to works conducted in or near water at the site.

As the proposed works include minor regrading and rock placement within the high-water mark of the channel, Aquafor will undertake a request for regulatory review under the federal *Fisheries Act*.

4.3 Vegetation Removals and Restoration

A detailed restoration plan is shown on Sheet 6 of the design drawings. As soon as possible following construction, all disturbed areas should be revegetated through application of an annual cover crop and native herbaceous seed mix in areas of disturbance. Native seed mix should include wildflowers (preferably including milkweed species) to promote wildlife habitat. Terraseeding is the preferred application to hydroseeding. The recommended annual cover crop consists of Canada Wild Rye (*Elymus canadensis*) (40%) and Annual Oats (*Avena sativa*) (60%) applied at a rate of 33 kg/ha. after the risk of frost (i.e., after March 31 and before October 31); if applied during the time of frost risk, the cover crop should be 100% Annual Oats at a rate of 33kg/ha.

In addition, interplanting with native trees and shrubs is recommended within the coastal floodplain where appropriate. Restoration within disturbed areas should be in keeping with existing communities, and interplanting should utilize vegetation appropriate to the target community. Such interplanting will aid in stabilizing the banks and will also enhance habitat for wildlife and aquatic species.

All species selected should be native, suitable to the site conditions, and reflect the diversity of species commonly found in local natural areas. Based on native species within Pembroke and the site's location within Plant Hardiness Zone 4b, suggested species and sizes are listed in **Table 4-1**, **Table 4-2**, and **Table 4-3**.

Scientific Name	Common Name	% by Weight				
Nurse Crop Mix (Application Rate: 33 kg/ha)						
Elymus canadensis	Canada Wild Rye	40%				
Avena sativa	Annual Oats	60%				
Upland Mix (Application Rate: 25	kg/ha)					
Asclepias syriaca	Common Milkweed	5%				
Clematis virginiana	Virgin's Bower	2%				
Fragaria virginiana	Wild Strawberry	3%				
Monarda fistulosa	Wild Bergamot	5%				
Panicum acuminatum (P.implicatum; P. lanuginosum)	Hairy Panic Grass	30%				
Rudbeckia hirta	Black-eye Susan	15%				
Solidago canadensis	Canada Goldenrod	8%				
Sporobolus cryptandrus	Sand Dropseed	30%				
Symphyotrichum cordifolium	Heart-leaved Aster	1%				
Symphyotrichum novae-angliae	New England Aster	1%				
Riparian Mix (Application Rate: 25 kg/ha)						

Table 4-1: Native Seed Mixes

Head Office:

Branch Office:

55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

April 1st, 2022

Anemonastrum canadensis	Canada Anemone	1%
Apocynum cannibinum	Indian-hemp Dogbane	5%
Asclepias incarnata ssp. incarnata	Swamp Milkweed	5%
Bidens cernua	Nodding Beggarticks	2%
Bidens frondose	Devil's Beggarticks	2%
Carex granularis	Meadow/Open Field Sedge	20%
Clematis viginiana	Virgin's Bower	4%
Elymus virginicus var. virginicus	Virginia Wild Rye	10%
Euthamia graminifolia	Grass-leaved Goldenrod	5%
Juncus dudleyi	Dudley's Rush	10%
Poa palustris	Fowl Bluegrass	25%
Solidago canadensis	Canada Goldenrod	4%
Symphyotrichum novae-angliae	New England Aster	1%
Symphyotrichum puniceum	Purple Stemmed Aster	1%
Verbena hastata	Blue Vervain	5%


Table 4-2: Native Tree Plantings

Scientific Name	Common Name	Amount	Size
Acer saccharum	Sugar Maple	6	5 gal. potted
Picea glauca	White Spruce	5	5 gal. potted
Thuja occidentalis	Eastern White Cedar	5	5 gal. potted
Tilia americana	Basswood	5	5 gal. potted

Table 4-3: Native Shrub Plantings

Scientific Name	Common Name	Amount	Size		
Restoration Plantings					
Amelanchier arborea	Downy Juneberry	21	2 gal. potted		
Cornus alternifolia	Alternate-leaved Dogwood	21	2 gal. potted		
Lonicera canadensis	Northern Fly Honeysuckle	21	2 gal. potted		
Prunus virginiana	Chokecherry	21	2 gal. potted		
Ribes hirtellum	Smooth Gooseberry	21	2 gal. potted		
Vegetated Buttress Plantings					
Cornus sericea	Red-osier Dogwood	12	2 gal. potted		
Cornus rugosa	Round-leaved Dogwood	12	2 gal. potted		
Salix petiolaris	Slender Willow	12	2 gal. potted		
Spirea alba	Narrow-leaved Meadowsweet	12	2 gal. potted		
Viburnum lentago	Nannyberry	12	2 gal. potted		

Branch Office: 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

4.3.1 Removal Timing Window and Protection Measures

Aquator Bee

It will be necessary to remove some trees and other vegetation to facilitate the proposed works. Of the 14 live trees identified during the assessment (detailed previously in **Table 2-1**), 7 have been identified for removal. Trees identified for removal are listed in **Table 4-4** below and are shown on Sheet 5 of the detailed design drawings. Tree removals on the site should take place outside of the typical bird nesting and bat maternity roost season (collectively April 1 to September 30).

Construction activities can have adverse effects on nearby trees that are to remain in place and should not be disturbed by the proposed works. Tree protections measures, consisting of filter fence specified on Sheet 4 of the detailed design drawings, should be followed in order to mitigate against potential damages.

Table 4-4. Trees identified for Kemovar				
Tag #	Species Common Name	Species Botanical Name	Condition	
809	Manitoba Maple	Acer negundo	Good	Remove
810	Hybrid Crack Willow	Salix x rubens	Poor	Remove
813	White Elm	Ulmus americana	Good	Remove
814	Manitoba Maple	Acer negundo	Fair-Good	Remove
815	White Ash	Fraxinus americana	Good	Remove
816	Manitoba Maple	Acer negundo	Good	Remove
NT1	Manitoba Maple	Acer negundo	Fair-Good	Remove

Table 4-4: Trees Identified for Removal

5 EASEMENT REQUIREMENTS

Aquafor was provided the property fabric by the City of Pembroke on March 7, 2022. In all cases, an OLS should be retained to confirm property parcels and associated limits. In some cases, it may be necessary to require temporary or permanent easements.

6 PERMITS AND APPROVALS

6.1 MNRF Fish Collection Permit

As de-watering will be required to accommodate construction, a fish rescue must be conducted. It will therefore be necessary to obtain a fish collection permit from the MNRF prior to construction. In addition, the dewatering and fish rescue must be conducted in accordance with MNRF timing windows to reduce harm to aquatic species, with no in-water works occurring between October 1 to July 15 (as discussed in **Section 4.2.3**). In the event that the work area becomes inundated following a significant rainfall event, fish rescues will be required prior to continuing instream works.

6.2 Provincial Species at Risk – MECP 17(2) (b/c) Species at Risk Permit

Prior to implementation, the study area should be subject to a Species at Risk (SAR) screening to identify any potential conflicts and ensure compliance with applicable legislation. Screening should be completed by consulting background information and agencies (MECP) to identify potential species associations, and assessing

the potential for those species to occur in the study area based on their habitat requirements as compared to the habitat present on site. Mitigation measures to prevent or minimize impacts to species should be developed. If endangered or threatened species will potentially be impacted by the project, an Information Gathering Form (IGF) should be prepared and submitted to the MECP so that they may review the project and advise on requirements under the *Endangered Species Act*. Such requirements may include: implementation of additional mitigation measures as specified by MECP; registering the project via a Notice of Activity under a regulatory exemption; or preparation of an Overall Benefit Permit (OBP) package to address impacts to protected species or habitat. Please note that the review period for an OBP, if such is required, is currently estimated at nine months to one year.

6.3 Department of Fisheries and Oceans Request for Review

As noted in **Section 4.2.4**, the detailed design will be submitted to DFO for review under the federal *Fisheries Act*.

7 CONSTRUCTION REQUIREMENTS

Construction Supervision – To ensure that the objectives of the outfall rehabilitation design are realized, it is important that someone with experience in channel design and restoration be part of the construction supervision (i.e., a qualified professional or representative of Aquafor Beech Ltd.). The supervision will enable construction issues to be addressed quickly and appropriately and ensure that important design details such as those listed below are implemented:

- Implementation of functional erosion and sediment control measures, including dewatering and pumping procedures;
- Removal of existing vegetation within, and protection of vegetation in close proximity to, the works area and access route;
- Confirmation of stone size gradation;
- Construction of an appropriate transition at the upstream and downstream tie-in points; and
- Restoration planting of native shrubs and trees, and Terraseeding of native seed mix.

Erosion and Sediment Control Measures – Erosion protection shall be used on regraded banks to provide erosion protection prior to the establishment of a vegetative cover.

Inspection of ESC measures should be completed regularly during the construction process to ensure that erosion and sediment control measures are functioning as intended and to address any immediate concerns. Similarly, monitoring of erosion control works should be completed following any flooding event to ensure that erosion control blankets and plantings are not compromised as a result of the event. The inspection and monitoring should be completed by an engineer, environmental inspector, or representative of Aquafor Beech Ltd.

Timing – Construction timing is restricted for fisheries protection. The Indian River provides habitat to both spring and fall spawning species. As such, no in-water works may occur between October 1 to July 15 of any given year to respect spring and fall spawning species for the MNR Southern Region. All tree removals on the site must take place outside of the period from April 1 to September 30, which is inclusive of the typical bird nesting season (April 1 to August 31) and the typical maternity roost season (April 1 - September 30).

April 1st, 2022

Fish Removal – An initial fish rescue will be required once the in-water work area has been isolated; the fish rescue will be completed prior to dewatering the work area. Subsequent fish rescues will be required if the coffer dam isolating the work area is overtopped by high flows in the river. The contractor will be responsible for coordinating with the qualified aquatic biologist for fish rescues.

Construction Methodology – The channel bank and bed works must be undertaken in the dry. Dry working conditions will be created by blocking the perimeter of the work zone with coffer dams and routing the water around the work zone (dam and flume techniques). Additional precautions and procedures, specified in the detailed drawings, include:

- All practical measures will be implemented to maintain the work zone in good condition;
- Utilities will be located and protected;
- Equipment refuelling will take place in the designated staging area, a minimum of 30 m from the watercourse; and
- All erosion and sediment control measures will be maintained in good working order.

Site Access – Access for construction is proposed from McGee Street. The access routes are shown on Sheet 5 of the drawing set. A staging and storage area has also been shown. Any changes to the access routes or staging area locations must be approved by the City and the field engineer.

Vegetation – To minimize the rate of erosion, it is desirable to establish vegetation quickly where it has been specified. Potted shrubs, potted trees, and a native seed mix (to be applied by Terraseeding) will be used to restore the site. Onsite consideration should be given to the season and prevailing light conditions for planting. If construction occurs after October, plantings should be completed as soon as possible in the following spring season.

8 CONSTRUCTION COST ESTIMATION

Preliminary construction costs have been estimated based on a schedule of quantities from the detailed design presented here. The construction cost estimate is \$151,506 which includes a 20% contingency but is exclusive of HST. The detailed schedule of quantities showing the breakdown of costs is provided on the following page in **Table 8-1**.

April 1st, 2022

Table 8-1: Construction Cost Estimate for Reconstruction of Outfall 45

	PEMBROKE OUTLETS - OUTLET # 4	5				
	City of Pembrok e					
Item	Description	Qty	Unit	Unit Price	Extended Price (Excl. HST)	
	Section "A" – Site Preparation & Remo	1	1			
1	Bonds and Insurance	1	LS	\$6,000	\$6,000	
2	Field Office	1	LS	\$3,000	\$3,000	
3	Construction Layout, Utility & Locates	1	LS	\$8,000	\$8,000	
4	Mobilization & Demobilization	1	LS	\$10,000	\$10,000	
5	Access Route, Mud Mat, Steel Plates & Staging Areas	1	LS	\$12,000	\$12,000	
6	Clearing, Grubbing, and Vegetation Removal	1	LS	\$10,000	\$10,000	
7	Supply, Install & Remove Temporary Erosion & Sediment Control Fence	35	m	\$20	\$700	
8	Supply, Install & Remove Temporary Construction Fence	90	m	\$15	\$1,350	
9	Stream Control, Bypass Pumping & Dewatering	1	LS	\$10,000	\$10,000	
10	MNRF Fish Collection Permit and Fish Rescues	1	LS	\$5,000	\$5,000	
11	Removal & Disposal of Excess Pipe	1	LS	\$3,000	\$3,000	
	Subtotal Section A (Excl of HST)				\$69,050	
12	Section "B" – Sewer Works, Channel Works and Excavate Earthwork Grading & Disposal of Materials (~70 m3)	d Restor:	ation LS	\$6.000	\$6,000	
	Excavate, Earthwork, Grading & Disposal of Materials (~70 m3)	1	LS	\$6,000	\$6,000	
15	Supply & Placement of Vegetated Buttress	00		¢200	¢10.000	
	Roundtstone as specified	90	tonne	\$200	\$18,000	
	Topsoil to enhance vegetation	20	m ³	\$50	\$1,000	
	Stock Plantings (2 gal potted @ 0.5 spacing)	10		¢45	\$540	
	i) Red-osier Dogwood	12	ea	\$45	\$540	
	ii) Slender Willow	12	ea	\$45 \$45	\$540 \$540	
	iii) Nannyberry	_	ea	\$45 \$45	\$540 \$540	
	iv) Narrow-Leaved Meadowsweet	12	ea	\$45 \$45	\$540 \$540	
1(v) Round Leaved Dogwood		ea 2			
16 17	Supply & Placement of Erosion Control Blanket - Coir Mat Supply & Placement of Topsoil for Restoration (300mm for terraseed area & 150mm for Sod)	180 75	m ² m ³	\$8 \$50	\$1,440 \$3,750	
21	Supply & Application of Terraseed Mixture (Upland)	80	m ²	\$8	\$640	
21	Supply & Application of Terraseed Mixture (Opanio)	100	m ²	\$8	\$800	
19		145		\$20	\$2,900	
20	Supply & Application of Sod Supply & Planting of Trees (5 gal potted @ min 2.5m spacing)	143	m ²	φ20	φ2,900	
	ii) Sugar Maple	6	ea	\$250	\$1,500	
	ii) White Spruce	5	ea	\$250	\$1,250	
	iii) Eastern White Cedar	5	ea	\$250	\$1,250	
	iv) Basswood	5	ea	\$250	\$1,250	

April 1st, 2022

21	Supply & Planting of Shrubs (2 gal potted @ 1m spacing)				
	i) Alternate Leaved Dogwood	21	ea	\$45	\$945
	ii) Chokecherry	21	ea	\$45	\$945
	iii) Smooth Gooseberry	21	ea	\$45	\$945
	iv) Downy juneberry	21	ea	\$45	\$945
	v) Northern Fly Honeysuckle	21	ea	\$45	\$945
	Subtotal Section B (Excl of HST)				\$47,205
	Section "C" – Provisional				
3	Migratory Nesting Bird Survey	1	LS	\$5,000	\$5,000
4	Retain Certified Arborist	1	LS	\$5,000	\$5,000
	Subtotal Section C (Excl of HST)				\$10,000
	Section "D" – Contingency				
25	Contingency (20%)	1	LS	\$25,251	\$25,251
	Subtotal Section D (Excl of HST)				\$25,251
	Section "A" – Site Preparation & Removals				\$69,050
	Section "B" – Sewer Works, Channel Works and Restoration				\$47,205
	Section "C" – Provisional				\$10,000
	Section "D" – Contingency				\$25,251
	Sub Total (Exc of taxes)				\$151,506
	HST @ 13%				\$19,696
	Total Bid Price (Incl of taxes)				\$171,202
	Outlet # 45 Engineering Estimate (Inc. Contingency, Exc.	HST)			\$151,506

9 **REFERENCES**

Natural Resources Canada (2021). Plant hardiness of Canada. Retrieved from http://planthardiness.gc.ca/

Department of Fisheries and Oceans. (2021). Projects near water. Retrieved from Fisheries and Oceans Canada: http://www.dfo-mpo.gc.ca/pnw-ppe/index-eng.html

10 SIGNATURES

This project is being completed with input from the following consulting staff:

Dave Maunder – Project Manager Robert Amos – Water Resources Lead Golmar Golmohammadi – Water Resources Engineer Gabriel Dubé – Water Resources Specialist Yun Xia – Water Resources Specialist Palka Sharma – CAD Technician Julie Scott – Terrestrial Ecologist

Head Office:

April 1st, 2022

Jakub Ripley – GIS Specialist Darcy LaFramboise – Certified Arborist Graham Eby – Aquatic Biologist

Upon your review, should you have any questions or comments, please do not hesitate to contact the undersigned.

clavid Maunder

Dave Maunder, M.Sc., P.Eng Project Manager Aquafor Beech Limited

April 1st, 2022

Technical Memo for Design and Reconstruction of Storm Sewer Outfall 46

1 INTRODUCTION

As part of the City-Wide Flood Risk Assessment and Storm Outlet Review, the City of Pembroke has requested an assessment of the condition on 17 of the City's storm sewer outfalls, complete with an inventory of the findings. After conducting the outfall assessment, Aquafor Beech reported a total of 9 outfalls in poor condition and in need of repair. The following Technical Memo provides an overview of the existing conditions of Outfall 46 as well as the Detailed Design of the proposed outfall reconstruction.

The study area and location of Outfall 46 are shown in **Figure 1-1**. The storm sewer has a diameter of 250 mm and extends off of Murray Street, outletting into Indian River approximately 105 m downstream of Eganville Road. Outfall 46 was identified to be in need of rehabilitation and was ranked as the 8th highest priority site, of the total 17 sites that were assessed.

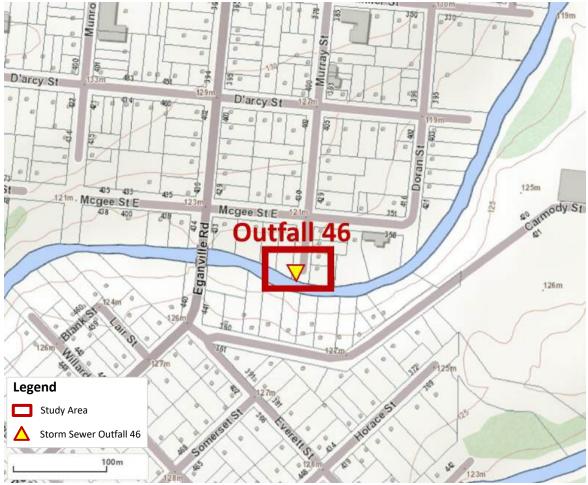


Figure 1-1: Location of Study Area for Storm Sewer Outfall 46

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 1

www.aquaforbeech.com

April 1st, 2022

2 EXISTING CONDITIONS

2.1 Overview

Outfall 46 consists of a 250 mm pipe that was originally connected to a 250 mm cast iron pipe, though a 2 cm gap has since developed at the joint of the two pipe segments (Figure 2-1). The cast iron pipe extents well past the channel bank into the Indian River, with the outlet completely submerged and partially filled with a 2.5 cm deep deposit of fine sand (Figures 2-2, 2-3 and 2-4). It is unclear whether the cast iron pipe was intended to extend into the Indian River or whether it became exposed due to recession of the channel bank.

Figure 2-1: Gap Between the Cast Iron and Clay Pipe Segments

Figure 2-2: Cast Iron Pipe Extending into the Indian River (Looking Upstream)

Figure 2-3: Close-up View of the Cast Iron Pipe

Figure 2-4: Submerged End of the Cast Iron Pipe

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 2

www.aquaforbeech.com

2.2 Topographic Survey

A detailed topographic survey was completed from November 8th to November 19th in 2021 to record existing site conditions. Sufficient detail was captured to support the detailed design of the outfall reconstruction. Key parameters captured during the survey include:

- Longitudinal profile of the ground surface along, extending into the Indian River to capture the submerged end of the cast iron pipe and streambed tie-in elevations;
- Any visible storm sewer infrastructure near the outlet (invert and obvert, exposed pipe, etc.);
- Upstream maintenance hole lid and pipe invert; and
- Top and bottom of bank elevations approximately 5-10 m upstream and downstream of the storm sewer outfall.

The survey was completed using a high-precision GPS instrument that was referenced to the NAD83 UTM Zone 18N horizontal coordinate system and the CGVD2013 vertical datum. A DEM derived from LiDAR data collected between 2019-2020 by Natural Resources Canada was used to complement the topographic survey data, allowing for elevations to be determined beyond the extents of the survey.

2.3 Geotechnical Investigation

A detailed geotechnical investigation was undertaken by GEMTEC within the study area on February 14th, 2022. The assessment was intended to define and characterize the subsurface soil conditions, inform the design of the proposed outfall reconstruction, and make recommendations regarding slope stabilization measures. One (1) borehole designated as 22-06 was advanced to a depth of 4.6 m below grade using portable drilling equipment.

Soil samples were obtained at regular intervals in the overburden soils with a 51 mm diameter Standard Penetration Test split-spoon sample. This was done in accordance with ASTM Standard D-1586, which provides the penetration resistance (N-value) of the soils. Soil samples were examined in the field for type, texture and colour to classify each soil layer identified. The samples were sealed in air tight plastic bags and transferred to GEMTEC's laboratory for further examination and selection of appropriate samples for laboratory testing. The results of the geotechnical investigation, along with a borehole location plan, are included in **Appendix I**.

A 50 mm layer of asphaltic concrete was encountered at the surface, followed by a 160 mm thick road base layer and an 800 mm subbase layer. The road base layer consisted of brown crushed sand with gravel and some silt, and the subbase layer was composed of brown sand with some gravel and some silt. The subbase material was underlain by native deposits of silty sand (2.2 m thick) and silty clay (extending to the termination depth of the borehole). Based on soil sample appearance, the groundwater level was estimated to be at approximately 3.2 m below surface grade at the time of the investigation.

2.4 Tree Inventory

A comprehensive tree inventory was undertaken in the Outfall 46 study area in February, 2022 to identify trees that may potentially be removed or damaged to accommodate construction activities. A total of 10 trees were inventoried in the study area, including at any potentially suitable access and staging areas. Sheet 5 in the detailed design drawings shows the locations of the surveyed trees within the Outfall 46 study area. **Table 2-1** provides a summary of the tree inventory results by species.

April 1st, 2022

Tag #	Species Common Name	Species Botanical Name	Condition
NT1	Manitoba Maple	Acer negundo	Fair
801	White Elm	Ulmus americana	Good
802	Manitoba Maple	Acer negundo	Fair-Good
803	White Ash	Fraxinus americana	Fair-Good
804	Manitoba Maple	Acer negundo	Fair-Good
805	White Elm	Ulmus americana	Fair-Good
Bn1	Butternut	Juglans cinerea	Good
806	Manitoba Maple	Acer negundo	Fair-Good
807	White Ash	Fraxinus americana	Good
808	White Ash	Fraxinus americana	Good

Table 2-1: Tree Inventory Summary by Species

3 **DESIGN FACTORS**

At the outset of the design process, all opportunities, constraints, and considerations for the reconstruction of Outfall 46 were identified. This ensured that they were adequately considered during development of the detailed design. Constraints and considerations identified within the study area were as follows:

Disturbance to Terrestrial Vegetation – Some of the trees and other vegetation located within the study area may be harmed or removed during construction. However, space allowing, any mature trees that are required for removal to facilitate construction will be compensated with trees plantings at a 3:1 ratio, along with 5 shrubs planted for every 1 tree planted. If there is insufficient space near the study area to meet this replanting target, trees will be planted at a minimum 1:1 ratio, with 5 shrubs planted for every 1 tree planted. Tree species selection will be based on their nativity within the City of Pembroke, and seed mix composition will reflect typical vegetation found within Plant Hardiness Zone 4b (Natural Resources Canada, 2021).

Utilities – In addition to the storm sewer infrastructure identified during the background review of base mapping provided by the City, Aquafor has also completed an Ontario One Call utility locate request for the entire site identify all other utilities and any potential design conflicts.

Channel Bank Stabilization – Toe erosion and slope failures should be restored by regrading to attain a natural long-term stable slope, followed by the application of channel bank and toe erosion protection.

Upstream and Downstream Tie-In Points – Care must be taken to ensure that there is a smooth transition into, and out of, the proposed outfall design, such that the stability of the slope and channel banks are not compromised.

Outlet Protection – The design should consider appropriate protection to prevent erosion and scouring damage to the pipe and associated channel works.

DETAILED DESIGN Δ

4.1 Principal Design Components

Detailed design drawings for Outfall 46 are provided under a separate cover. The proposed design consists of constructing an armourstone retaining wall, with the intention of stabilizing the channel bank and providing protection against erosion. This selected as the preferred alternative for stabilizing and protecting the river bank, rather than a sloped vegetated buttress, due to limited space between Murray Street and the river bank.

Specifics of the design include removing the exposed 250 mm cast iron pipe and incorporating the remaining 250 mm clay pipe within the armourstone retaining wall. Angular stone is specified at the base of the armourstone wall, so as to provide protection against scouring from stormwater exiting the pipe.

4.2 Wildlife Mitigation Measures

4.2.1 Breeding Birds

Tree removals should occur outside of the bird nesting window (generally April 1st to August 31st) to ensure that active nests of protected species are not harmed or destroyed and that the project is compliant with the *Migratory Birds Convention Act*. Individual trees or areas of low-complexity habitat could potentially be removed during the nesting window following an inspection to confirm the absence of active nesting in the area. However, this method is not recommended for complex habitats (e.g., mature woodland) due to the low detectability of nests in such areas, and is further not permitted if a restriction is placed on tree removal due to SAR bat habitat.

4.2.2 Bat Maternity Roosts

The active window for Ontario's SAR bats extends from April 1st to September 30th. The study area is inclusive of potential SAR bat habitat, and as such, tree removal is prohibited during this period.

4.2.3 In-Water Works Timing Windows and Fisheries Act

Discussions with MNRF (personal communication, March 15, 2022) confirmed that the Indian River provides habitat to both spring and fall spawning species. As a major watercourse, the Indian River contains fish at any time during any given year. Thus, no in-water works may occur between October 1 to July 15 of any given year to avoid works within the spring and fall spawning windows for the MNR Southern Region (March 15 - July 15 and October 1 - May 21, respectively).

4.2.4 DFO Self-assessment

The federal *Fisheries Act* requires that projects avoid causing the death of fish and the harmful alteration, disruption or destruction of fish habitat unless authorized by the Minister of Fisheries and Oceans Canada (DFO). This applies to work being conducted in or near waterbodies that support fish at any time during any given year or are connected to waterbodies that support fish at any time during any given year. As noted above, the study area does contain fish at any time during any given year. Therefore, the *Fisheries Act* applies to works conducted in or near water at the site.

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

As the proposed works include minor regrading and rock placement within the high-water mark of the channel, Aquafor will undertake a request for regulatory review under the federal *Fisheries Act*.

4.3 Vegetation Removals and Restoration

A detailed restoration plan is shown on Sheet 6 of the design drawings. As soon as possible following construction, all disturbed areas should be revegetated through application of an annual cover crop and native herbaceous seed mix in areas of disturbance. Native seed mix should include wildflowers (preferably including milkweed species) to promote wildlife habitat. Terraseeding is the preferred application to hydroseeding. The recommended annual cover crop consists of Canada Wild Rye (*Elymus canadensis*) (40%) and Annual Oats (*Avena sativa*) (60%) applied at a rate of 33 kg/ha. after the risk of frost (i.e., after March 31 and before October 31); if applied during the time of frost risk, the cover crop should be 100% Annual Oats at a rate of 33kg/ha.

In addition, interplanting with native trees and shrubs is recommended within the coastal floodplain where appropriate. Restoration within disturbed areas should be in keeping with existing communities, and interplanting should utilize vegetation appropriate to the target community. Such interplanting will aid in stabilizing the banks and will also enhance habitat for wildlife and aquatic species.

All species selected should be native, suitable to the site conditions, and reflect the diversity of species commonly found in local natural areas. Based on native species within Pembroke and the site's location within Plant Hardiness Zone 4b, suggested species and sizes are listed in **Table 4-1**, **Table 4-2**, and **Table 4-3**.

April 1st, 2022

Table 4-1: Native Seed Mixes						
Scientific Name	Common Name	% by Weight				
Nurse Crop Mix (Application Rate: 33 kg/ha)						
Elymus canadensis	Canada Wild Rye	40%				
Avena sativa	Annual Oats	60%				
Riparian Mix (Application Rate: 25	kg/ha)					
Anemonastrum canadensis	Canada Anemone	1%				
Apocynum cannibinum	Indian-hemp Dogbane	5%				
Asclepias incarnata ssp. incarnata	Swamp Milkweed	5%				
Bidens cernua	Nodding Beggarticks	2%				
Bidens frondose	Devil's Beggarticks	2%				
Carex granularis	Meadow/Open Field Sedge	20%				
Clematis viginiana	Virgin's Bower	4%				
Elymus virginicus var. virginicus	Virginia Wild Rye	10%				
Euthamia graminifolia	Grass-leaved Goldenrod	5%				
Juncus dudleyi	Dudley's Rush	10%				
Poa palustris	Fowl Bluegrass	25%				
Solidago canadensis	Canada Goldenrod	4%				
Symphyotrichum novae-angliae	New England Aster	1%				
Symphyotrichum puniceum	Purple Stemmed Aster	1%				
Verbena hastata	Blue Vervain	5%				

Table 4-2: Native Tree Plantings

Scientific Name	Common Name	Amount	Size
Acer rubrum	Red Maple	1	5 gal. potted
Acer saccharum	Sugar Maple	1	5 gal. potted
Picea glauca	White Spruce	1	5 gal. potted
Tilia americana	Basswood	1	5 gal. potted

Table 4-3: Native Shrub Plantings

Scientific Name	Common Name	Amount	Size
Amelanchier arborea	Downy Juneberry	4	2 gal. potted
Cornus rugosa	Round-leaved Dogwood	4	2 gal. potted
Lonicera canadensis	Northern Fly Honeysuckle	4	2 gal. potted
Prunus virginiana	Chokecherry	4	2 gal. potted
Spirea alba	Narrow-leaved Meadowsweet	4	2 gal. potted

Branch Office: 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

4.3.1 Removal Timing Window and Protection Measures

It will be necessary to remove some trees and other vegetation to facilitate the proposed works. Of the 10 live trees identified during the assessment (detailed previously in **Table 2-1**), 4 have been identified for removal. Trees identified for removal are listed in **Table 4-4** below and are shown on Sheet 5 of the detailed design drawings. Tree removals on the site should take place outside of the typical bird nesting and bat maternity roost season (collectively April 1 to September 30).

Construction activities can have adverse effects on nearby trees that are to remain in place and should not be disturbed by the proposed works. Tree protections measures, consisting of hoarding fence specified on Sheet 4 of the detailed design drawings, should be followed in order to mitigate against potential damages.

Tag #	Species Common Name	Species Botanical Name	Condition		
801	White Elm	Ulmus americana	Good		
802	Manitoba Maple	Acer negundo	Fair-Good		
803	White Ash	Fraxinus americana	Fair-Good		
804	Manitoba Maple	Acer negundo	Fair-Good		

Table 4-4: Trees Identified for Removal

5 EASEMENT REQUIREMENTS

Aquafor was provided the property fabric by the City of Pembroke on March 7, 2022. In all cases, an OLS should be retained to confirm property parcels and associated limits. In some cases, it may be necessary to require temporary or permanent easements.

6 PERMITS AND APPROVALS

6.1 MNRF Fish Collection Permit

As de-watering will be required to accommodate construction, a fish rescue must be conducted. It will therefore be necessary to obtain a fish collection permit from the MNRF prior to construction. In addition, the dewatering and fish rescue must be conducted in accordance with MNRF timing windows to reduce harm to aquatic species, with no in-water works occurring between October 1 to July 15 (as discussed in **Section 4.2.3**). In the event that the work area becomes inundated following a significant rainfall event, fish rescues will be required prior to continuing instream works.

6.2 Provincial Species at Risk – MECP 17(2) (b/c) Species at Risk Permit

Prior to implementation, the study area should be subject to a Species at Risk (SAR) screening to identify any potential conflicts and ensure compliance with applicable legislation. Screening should be completed by consulting background information and agencies (MECP) to identify potential species associations, and assessing the potential for those species to occur in the study area based on their habitat requirements as compared to the habitat present on site. Mitigation measures to prevent or minimize impacts to species should be developed. If endangered or threatened species will potentially be impacted by the project, an Information Gathering Form (IGF) should be prepared and submitted to the MECP so that they may review the project and advise on

April 1st, 2022

requirements under the *Endangered Species Act*. Such requirements may include: implementation of additional mitigation measures as specified by MECP; registering the project via a Notice of Activity under a regulatory exemption; or preparation of an Overall Benefit Permit (OBP) package to address impacts to protected species or habitat. Please note that the review period for an OBP, if such is required, is currently estimated at nine months to one year.

6.3 Department of Fisheries and Oceans Request for Review

As noted in **Section 4.2.4**, the detailed design will be submitted to DFO for review under the federal *Fisheries Act*.

7 CONSTRUCTION REQUIREMENTS

Construction Supervision – To ensure that the objectives of the outfall rehabilitation design are realized, it is important that someone with experience in channel design and restoration be part of the construction supervision (i.e., a qualified professional or representative of Aquafor Beech Ltd.). The supervision will enable construction issues to be addressed quickly and appropriately and ensure that important design details such as those listed below are implemented:

- Implementation of functional erosion and sediment control measures, including dewatering and pumping procedures;
- Removal of existing vegetation within, and protection of vegetation in close proximity to, the works area and access route;
- Confirmation of stone size gradation;
- Construction of an appropriate transition at the upstream and downstream tie-in points; and
- Restoration planting of native shrubs and trees, and Terraseeding of native seed mix.

Erosion and Sediment Control Measures – Erosion protection shall be used on regraded banks to provide erosion protection prior to the establishment of a vegetative cover.

Inspection of ESC measures should be completed regularly during the construction process to ensure that erosion and sediment control measures are functioning as intended and to address any immediate concerns. Similarly, monitoring of erosion control works should be completed following any flooding event to ensure that erosion control blankets and plantings are not compromised as a result of the event. The inspection and monitoring should be completed by an engineer, environmental inspector, or representative of Aquafor Beech Ltd.

Timing – Construction timing is restricted for fisheries protection. The Indian River provides habitat to both spring and fall spawning species. As such, no in-water works may occur between October 1 to July 15 of any given year to respect spring and fall spawning species for the MNR Southern Region. All tree removals on the site must take place outside of the period from April 1 to September 30, which is inclusive of the typical bird nesting season (April 1 to August 31) and the typical maternity roost season (April 1 - September 30).

Fish Removal – An initial fish rescue will be required once the in-water work area has been isolated; the fish rescue will be completed prior to dewatering the work area. Subsequent fish rescues will be required if the coffer dam isolating the work area is overtopped by high flows in the river. The contractor will be responsible for coordinating with the qualified aquatic biologist for fish rescues.

April 1st, 2022

Construction Methodology – The channel bank and bed works must be undertaken in the dry. Dry working conditions will be created by blocking the perimeter of the work zone with coffer dams and routing the water around the work zone (dam and flume techniques). Additional precautions and procedures, specified in the detailed drawings, include:

- All practical measures will be implemented to maintain the work zone in good condition;
- Utilities will be located and protected;
- Equipment refuelling will take place in the designated staging area, a minimum of 30 m from the watercourse; and
- All erosion and sediment control measures will be maintained in good working order.

Site Access – Access for construction is proposed from Murray Street. The access routes are shown on Sheet 6 of the drawing set. A staging and storage area has also been shown. The existing guard rail and sign post are to be removed prior construction to facilitate site access, and are to be replaced upon completion of construction. Any changes to the access routes or staging area locations must be approved by the City and the field engineer.

Vegetation – To minimize the rate of erosion, it is desirable to establish vegetation quickly where it has been specified. Potted shrubs, potted trees, and a native seed mix (to be applied by Terraseeding) will be used to restore the site. Onsite consideration should be given to the season and prevailing light conditions for planting. If construction occurs after October, plantings should be completed as soon as possible in the following spring season.

8 CONSTRUCTION COST ESTIMATION

Preliminary construction costs have been estimated based on a schedule of quantities from the detailed design presented here. The construction cost estimate is \$169,104 which includes a 20% contingency but is exclusive of HST. The detailed schedule of quantities showing the breakdown of costs is provided on the following page in **Table 8-1**.

April 1st, 2022

Table 8-1: Construction Cost Estimate for Reconstruction of Outfall 46

	PEMBROKE OUILEIS - OUILEI # 46					
	City of Pembroke					
Item	Description	Qty	Unit	Unit Price	Extended Price (Excl. HST)	
	Section "A" – Site Preparation & Remova	ıls				
1	Bonds and Insurance	1	LS		\$0	
2	Field Office	1	LS		\$0	
3	Construction Layout, Utility & Locates	1	LS	\$8,000	\$8,000	
4	Mobilization & Demobilization	1	LS	\$10,000	\$10,000	
5	Access Route, Mud Mat & Staging Areas	1	LS	\$12,000	\$10,000	
6	Clearing, Grubbing, and Vegetation Removal Including Removal and Reinstalling Guard Rail	1	LS	\$10,000	\$10,000	
7	Supply, Install & Remove Temporary Tree Hoarding Fence	18	m	\$20	\$360	
8	Supply, Install & Remove Temporary Construction Fence	30	m	\$15	\$450	
9	Stream Control, Bypass Pumping & Dewatering	1	LS	\$12,000	\$12,000	
10	MNRF Fish Collection Permit and Fish Rescues	1	LS	\$5,000	\$5,000	
11	Removal & Disposal of Excess Sewer Pipe	1	LS	\$10,000	\$10,000	
Subtotal Section A (Excl of HST)						
	Section "B" – Sewer Works, Channel Works and	Restor	ation			
12	Excavate, Earthwork, Grading & Disposal of Materials	1	LS	\$8,000	\$8,000	
17	Supply & Placement of Angular Channel Substrate	50	tonne	\$200	\$10,000	
17	Supply & Placement of Armourstone Retaining Wall	140	tonne	\$235	\$32,900	
19	Supply & Placement of Erosion Control Blanket - Coir Mat	35	m ²	\$8	\$280	
20	Supply & Placement of Topsoil for Restoration (300mm)	10	m³	\$50	\$500	
21	Supply & Application of Terraseed Mixture	35	m ²	\$8	\$280	
23	Supply & Planting of Trees (5 gal potted @ min 2.5m spacing)					
	i) Sugar Maple	1	ea	\$250	\$250	
	ii) White Spruce	1	ea	\$250	\$250	
	iii) Red Maple	1	ea	\$250	\$250	
	v) Basswood	1	ea	\$250	\$250	
23	Supply & Planting of Shrubs (2 gal potted @ 1m spacing)					
	i) Round Leaved Dogwood	4	ea	\$45	\$180	
	ii) Chokecherry	4	ea	\$45	\$180	
	iii) Narrow leaved Meadowsweet	4	ea	\$45	\$180	
	iv) Downy juneberry	4	ea	\$45	\$180	
	v) Northern Fly Honeysuckle	4	ea	\$45	\$180	
	Subtotal Section B (Excl of HST)					

April 1st, 2022

Section "C" – Provisional						
24 Asphalt Road Repair (Removal, Granular Placement, New Asphalt, Buffer Restoration)	45	m ²	\$250	\$11,250		
25 Migratory Nesting Bird Survey	1	LS	\$5,000	\$5,000		
26 Retain Certified Arborist	1	LS	\$5,000	\$5,000		
Subtotal Section C (Excl of HST)				\$21,250		
Section "D" – Contingency						
27 Contingency (20%)	1	LS	\$28,184	\$28,184		
Subtotal Section D (Excl of HST)						
Section "A" - Site Preparation & Removals				\$65,810		
Section "B" - Sewer Works, Channel Works and Restoration				\$53,860		
Section "C" – Provisional				\$21,250		
Section "D" – Contingency				\$28,184		
Sub Total (Exc of taxes)				\$169,104		
HST @ 13%				\$21,984		
Total Bid Price (Incl of taxes)				\$191,088		
Outlet # 46 Engineering Estimate (Inc. Contingency, Exc. HST	.) ()	[\$169,104		

9 **REFERENCES**

Natural Resources Canada (2021). Plant hardiness of Canada. Retrieved from http://planthardiness.gc.ca/

Department of Fisheries and Oceans. (2021). Projects near water. Retrieved from Fisheries and Oceans Canada: http://www.dfo-mpo.gc.ca/pnw-ppe/index-eng.html

10 SIGNATURES

This project is being completed with input from the following consulting staff:

Dave Maunder – Project Manager Robert Amos – Water Resources Lead Golmar Golmohammadi – Water Resources Engineer Gabriel Dubé – Water Resources Specialist Yun Xia – Water Resources Specialist Palka Sharma – CAD Technician Julie Scott – Terrestrial Ecologist Jakub Ripley – GIS Specialist Darcy LaFramboise – Certified Arborist Graham Eby – Aquatic Biologist

Upon your review, should you have any questions or comments, please do not hesitate to contact the undersigned.

Head Office:		Branch Of
2600 Skymark Ave,	Building 6, Suite 202, L4W 5B2	55 Regal R
Tel: 905-629-0099	Fax: 905-629-0089	Tel: 519-22

Branch Office: 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Fel: 519-224-3740 • Fax: 519-224-3750

April 1st, 2022

claved Maunder

Dave Maunder, M.Sc., P.Eng Project Manager Aquafor Beech Limited

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 13

www.aquaforbeech.com

April 1st, 2022

Technical Memo for Design and Reconstruction of Storm Sewer Outfall 56

1 INTRODUCTION

As part of the City-Wide Flood Risk Assessment and Storm Outlet Review, the City of Pembroke has requested an assessment of the condition on 17 of the City's storm sewer outfalls, complete with an inventory of the findings. After conducting the outfall assessment, Aquafor Beech reported a total of 9 outfalls in poor condition and in need of repair. The following Technical Memo provides an overview of the existing conditions of Outfall 56 as well as the Detailed Design of the proposed outfall reconstruction.

The study area and location of Outfall 56 are shown in **Figure 1-1**. The sewer pipe has a diameter of 300 mm and conveys water under Noman Street, outletting into an outside bend of the Indian River, approximately 440 m upstream of the confluence with the Muskrat River. Outfall 56 was identified to be in need of rehabilitation and was ranked as the 9th highest priority site, of the total 17 sites that were assessed.

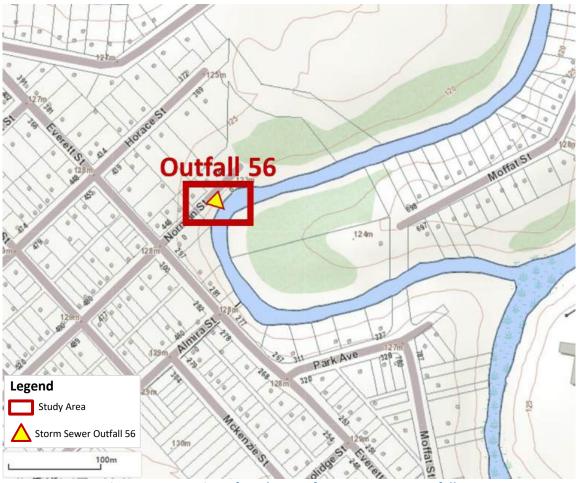


Figure 1-1: Location of Study Area for Storm Sewer Outfall 56

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

April 1st, 2022

2 EXISTING CONDITIONS

2.1 Overview

Outfall 56 consists of a 300 mm CSP sewer pipe that passes under Norman Street and was intended to collect water from an upstream box culvert, which has collapsed (Figure 2-1). However, a local resident informed Aquafor that very little water flows through the collapsed box culvert during storm event under existing conditions. The collapsed culvert passes under private property belonging to 444 Norman Street and is connected to the inlet of the CSP via a small ditch (Figure 2-2).

Approximately 30% of the CSP rise is filled with sediment (Figure 2-3). The outlet is recessed into the slope and is slightly crushed (Figure 2-4), with concrete rubble located near the outlet that appears to belong to a failed headwall. The outlet is located approximately 8 m away from the edge of the river, such that water existing the CSP flows down the channel slope. This has caused erosion scarring downstream of the outlet, particularly due to the high slope, which is approximately 1H:1V.

As shown in the detailed design drawings, much of the study area – including Norman Street – is located on private property belonging to 442 Norman Street.

Figure 2-1: Upstream Collapsed Box Culvert

Figure 2-2: CSP Inlet

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 2

www.aquaforbeech.com

April 1st, 2022

Figure 2-3: Sediment Deposits Inside the CSP

Figure 2-4: Crushed and Recessed CSP Outlet, Surrounded by Concrete Rubble

2.2 Topographic Survey

A detailed topographic survey was completed from November 8th to November 19th in 2021 to record existing site conditions. Sufficient detail was captured to support the detailed design of the outfall reconstruction. Key parameters captured during the survey include:

- Longitudinal profile of the ground surface overtop the CSP, extending down the slope and into the Indian River to capture streambed tie-in elevations;
- Any visible storm culvert/pipe infrastructure near the outlet (e.g., invert and obvert);
- Top and bottom of bank elevations approximately 5-10 m upstream and downstream of the storm sewer outfall; and
- Ground shots at the edge of erosion scars and within the eroded areas.

The survey was completed using a high-precision GPS instrument that was referenced to the NAD83 UTM Zone 18N horizontal coordinate system and the CGVD2013 vertical datum. A DEM derived from LiDAR data collected between 2019-2020 by Natural Resources Canada was used to complement the topographic survey data, allowing for elevations to be determined beyond the extents of the survey.

2.3 Geotechnical Investigation

A detailed geotechnical investigation was undertaken by GEMTEC within the study area on March 14th, 2022. The assessment was intended to define and characterize the subsurface soil conditions, inform the design of the proposed outfall reconstruction, and make recommendations regarding slope stabilization measures. One (1) borehole designated as 22-05 was advanced to a depth of 8.2 m below grade using a truck-mounted drill.

Soil samples were obtained at regular intervals in the overburden soils with a 51 mm diameter Standard Penetration Test split-spoon sample. This was done in accordance with ASTM Standard D-1586, which provides the penetration resistance (N-value) of the soils. Soil samples were examined in the field for type, texture and colour to classify each soil layer identified. The samples were sealed in air tight plastic bags and transferred to GEMTEC's laboratory for further examination and selection of appropriate samples for laboratory testing. In situ

vane shear testing was carried out in the borehole to measure the undrained shear strength of the silty clay deposits. The results of the geotechnical investigation, along with a borehole location plan, are included in Appendix I.

A 50 mm layer of asphaltic concrete was encountered at the surface, followed by a 150 mm thick road base layer and a 300 mm subbase layer. The road base layer consisted of brown crushed sand with gravel and some silt, and the subbase layer was composed of brown gravelly sand with trace silt. Beneath the road base, a 1.0 m thick layer of fill was encountered, consisting of brown sand and silt with trace gravel. The fill material was underlain by native deposits of silty sand (0.9 m thick), silty clay (3.4 m thick), and glacial till composed of clayey sand and gravel (extending to the termination depth of the borehole). Based on soil sample appearance, the groundwater level was estimated to be at approximately 7.2 m below surface grade at the time of the investigation.

2.4 **Tree Inventory**

A comprehensive tree inventory was undertaken in the Outfall 56 study area in February, 2022 to identify trees that may potentially be removed or damaged to accommodate construction activities. A total of 3 trees were inventoried in the study area, including at any potentially suitable access and staging areas. Sheet 4 in the detailed design drawings shows the locations of the surveyed trees within the Outfall 56 study area. Table 2-1 provides a summary of the tree inventory results by species.

Tag #	Tag # Species Common Name Species Botanical Name		Condition		
NT1	Manitoba Maple	Acer negundo	Fair		
NT2	Hybrid Crack Willow	Salix x rubens	Fair-Poor		
NT3	Manitoba Maple	Acer negundo	Poor		

Table 2-1: Tree Inventory Summary by Species

3 **DESIGN FACTORS**

At the outset of the design process, all opportunities, constraints, and considerations for the reconstruction of Outfall 56 were identified. This ensured that they were adequately considered during development of the detailed design. Constraints and considerations identified within the study area were as follows:

Disturbance to Terrestrial Vegetation – Some of the trees and other vegetation located within the study area may be harmed or removed during construction. However, space allowing, any mature trees that are required for removal to facilitate construction will be compensated with trees plantings at a 3:1 ratio, along with 5 shrubs planted for every 1 tree planted. If there is insufficient space near the study area to meet this replanting target, trees will be planted at a minimum 1:1 ratio, with 5 shrubs planted for every 1 tree planted. Tree species selection will be based on their nativity within the City of Pembroke, and seed mix composition will reflect typical vegetation found within Plant Hardiness Zone 4b (Natural Resources Canada, 2021).

Utilities – In addition to the storm sewer infrastructure identified during the background review of base mapping provided by the City, Aquafor has also completed an Ontario One Call utility locate request for the entire site identify all other utilities and any potential design conflicts.

April 1st, 2022

Slope Stabilization – Slope erosion and failures should be restored by regrading to attain a natural long-term stable slope, followed by application of erosion protection.

Upstream and Downstream Tie-In Points – Care must be taken to ensure that there is a smooth transition into, and out of, the proposed outfall design, such that the stability of the slope is not compromised.

CSP Protection – The design should consider appropriate protection to prevent damage to the ends of the CSP and sediment buildup within the pipe.

4 DETAILED DESIGN

4.1 Principal Design Components

Detailed design drawings for Outfall 56 are provided under a separate cover. The proposed design consists of placing galvanized end sections on each end of the existing CSP running under Norman Street and removing existing sediment deposits within the pipe. The galvanized sections are intended to protect the ends of the CSP, as well as to reduce the sediment load passing through the pipe. Rip rap is proposed both upstream and downstream of the CSP to protect against erosion. Due to the high slope (roughly 1H:1V) downstream of the CSP, a boulder weir is specified at the toe of the rip rap to prevent displacement of the substrate.

Rehabilitation of the collapsed upstream box culvert is beyond the scope of this project. However, Aquafor recommends undertaking future design and construction works to ensure proper conveyance of stormwater to the inlet of the CSP.

4.2 Wildlife Mitigation Measures

4.2.1 Breeding Birds

Tree removals should occur outside of the bird nesting window (generally April 1st to August 31st) to ensure that active nests of protected species are not harmed or destroyed and that the project is compliant with the *Migratory Birds Convention Act*. Individual trees or areas of low-complexity habitat could potentially be removed during the nesting window following an inspection to confirm the absence of active nesting in the area. However, this method is not recommended for complex habitats (e.g., mature woodland) due to the low detectability of nests in such areas, and is further not permitted if a restriction is placed on tree removal due to SAR bat habitat.

4.2.2 Bat Maternity Roosts

The active window for Ontario's SAR bats extends from April 1st to September 30th. The study area is inclusive of potential SAR bat habitat, and as such, tree removal is prohibited during this period.

4.2.3 In-Water Works Timing Windows and Fisheries Act

Discussions with MNRF (personal communication, March 15, 2022) confirmed that the Indian River provides habitat to both spring and fall spawning species. As a major watercourse, the Indian River contains fish at any time during any given year. Thus, no in-water works may occur between October 1 to July 15 of any given year

to avoid works within the spring and fall spawning windows for the MNR Southern Region (March 15 - July 15 and October 1 - May 21, respectively).

4.2.4 DFO Self-assessment

The federal *Fisheries Act* requires that projects avoid causing the death of fish and the harmful alteration, disruption or destruction of fish habitat unless authorized by the Minister of Fisheries and Oceans Canada (DFO). This applies to work being conducted in or near waterbodies that support fish at any time during any given year or are connected to waterbodies that support fish at any time during any given year. As noted above, the study area does contain fish at any time during any given year. Therefore, the *Fisheries Act* applies to works conducted in or near water at the site.

As the proposed works include minor regrading and rock placement within the high-water mark of the channel, Aquafor will undertake a request for regulatory review under the federal *Fisheries Act*.

4.3 Vegetation Removals and Restoration

A detailed restoration plan is shown on Sheet 5 of the design drawings. As soon as possible following construction, all disturbed areas should be revegetated through application of an annual cover crop and native herbaceous seed mix in areas of disturbance. Native seed mix should include wildflowers (preferably including milkweed species) to promote wildlife habitat. Terraseeding is the preferred application to hydroseeding. The recommended annual cover crop consists of Canada Wild Rye (*Elymus canadensis*) (40%) and Annual Oats (*Avena sativa*) (60%) applied at a rate of 33 kg/ha. after the risk of frost (i.e., after March 31 and before October 31); if applied during the time of frost risk, the cover crop should be 100% Annual Oats at a rate of 33kg/ha.

In addition, interplanting with native trees and shrubs is recommended within the coastal floodplain where appropriate. Restoration within disturbed areas should be in keeping with existing communities, and interplanting should utilize vegetation appropriate to the target community. Such interplanting will aid in stabilizing the banks and will also enhance habitat for wildlife and aquatic species.

All species selected should be native, suitable to the site conditions, and reflect the diversity of species commonly found in local natural areas. Based on native species within Pembroke and the site's location within Plant Hardiness Zone 4b, suggested species and sizes are listed in **Table 4-1**, **Table 4-2**, and **Table 4-3**.

April 1st, 2022

Table 4-1: Native Seed Mixes						
Scientific Name	Common Name	% by Weight				
Nurse Crop Mix (Application Rate: 33 kg/ha)						
Elymus canadensis	Canada Wild Rye	40%				
Avena sativa	Annual Oats	60%				
Riparian Mix (Application Rate: 25	kg/ha)					
Anemonastrum canadensis	Canada Anemone	1%				
Apocynum cannibinum	Indian-hemp Dogbane	5%				
Asclepias incarnata ssp. incarnata	Swamp Milkweed	5%				
Bidens cernua	Nodding Beggarticks	2%				
Bidens frondose	Devil's Beggarticks	2%				
Carex granularis	Meadow/Open Field Sedge	20%				
Clematis viginiana	Virgin's Bower	4%				
Elymus virginicus var. virginicus	Virginia Wild Rye	10%				
Euthamia graminifolia	Grass-leaved Goldenrod	5%				
Juncus dudleyi	Dudley's Rush	10%				
Poa palustris	Fowl Bluegrass	25%				
Solidago canadensis	Canada Goldenrod	4%				
Symphyotrichum novae-angliae	New England Aster	1%				
Symphyotrichum puniceum	Purple Stemmed Aster	1%				
Verbena hastata	Blue Vervain	5%				

Table 4-2: Native Tree Plantings

Scientific Name	Common Name	Amount	Size
Acer rubrum	Red Maple	1	5 gal. potted
Thuja occidentalis	Eastern White Cedar	1	5 gal. potted
Tilia americana	Basswood	1	5 gal. potted

Table 4-3: Native Shrub Plantings

Scientific Name	Common Name	Amount	Size
Amelanchier arborea	Downy Juneberry	3	2 gal. potted
Cornus alternifolia	Alternate-leaved Dogwood	3	2 gal. potted
Lonicera canadensis	Northern Fly Honeysuckle	3	2 gal. potted
Prunus virginiana	Chokecherry	2	2 gal. potted
Rubus ideaus	Wild Red Raspberry	2	2 gal. potted
Sambucus racemosa	Red-berried Elder	2	2 gal. potted

Head Office:

Branch Office: 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

4.3.1 Removal Timing Window and Protection Measures

It will be necessary to remove some trees and other vegetation to facilitate the proposed works. Of the 3 live trees identified during the assessment (detailed previously in **Table 2-1**), 1 has been identified for removal. The tree identified for removal is shown in **Table 4-4** below and on Sheet 4 of the detailed design drawings. Tree removals on the site should take place outside of the typical bird nesting and bat maternity roost season (collectively April 1 to September 30).

Construction activities can have adverse effects on nearby trees that are to remain in place and should not be disturbed by the proposed works. Tree protections measures, consisting of page wire hoarding specified on Sheet 3 of the detailed design drawings, should be followed in order to mitigate against potential damages.

Table 4-4: Tree Identified for Removal

Tag #	Species Common Name	Species Botanical Name	Condition
NT3	Manitoba Maple	Acer negundo	Poor

5 EASEMENT REQUIREMENTS

Aquafor was provided the property fabric by the City of Pembroke on March 7, 2022. As shown on Sheet 4 of the detailed design drawings, access routes and construction activities are proposed within private property at 442 Norman Street, for which an easement would be required. In all cases, an OLS should be retained to confirm property parcels and associated limits.

6 PERMITS AND APPROVALS

Aquafor Beed

6.1 MNRF Fish Collection Permit

As de-watering will be required to accommodate construction, a fish rescue must be conducted. It will therefore be necessary to obtain a fish collection permit from the MNRF prior to construction. In addition, the dewatering and fish rescue must be conducted in accordance with MNRF timing windows to reduce harm to aquatic species, with no in-water works occurring between October 1 to July 15 (as discussed in **Section 4.2.3**). In the event that the work area becomes inundated following a significant rainfall event, fish rescues will be required prior to continuing instream works.

6.2 Provincial Species at Risk – MECP 17(2) (b/c) Species at Risk Permit

Prior to implementation, the study area should be subject to a Species at Risk (SAR) screening to identify any potential conflicts and ensure compliance with applicable legislation. Screening should be completed by consulting background information and agencies (MECP) to identify potential species associations, and assessing the potential for those species to occur in the study area based on their habitat requirements as compared to the habitat present on site. Mitigation measures to prevent or minimize impacts to species should be developed. If endangered or threatened species will potentially be impacted by the project, an Information Gathering Form (IGF) should be prepared and submitted to the MECP so that they may review the project and advise on requirements under the *Endangered Species Act*. Such requirements may include: implementation of additional mitigation measures as specified by MECP; registering the project via a Notice of Activity under a regulatory exemption; or preparation of an Overall Benefit Permit (OBP) package to address impacts to protected species or habitat. Please note that the review period for an OBP, if such is required, is currently estimated at nine months to one year.

6.3 Department of Fisheries and Oceans Request for Review

As noted in **Section 4.2.4**, the detailed design will be submitted to DFO for review under the federal *Fisheries Act*.

7 CONSTRUCTION REQUIREMENTS

Construction Supervision – To ensure that the objectives of the outfall rehabilitation design are realized, it is important that someone with experience in channel design and restoration be part of the construction supervision (i.e., a qualified professional or representative of Aquafor Beech Ltd.). The supervision will enable construction issues to be addressed quickly and appropriately and ensure that important design details such as those listed below are implemented:

- Implementation of functional erosion and sediment control measures, including dewatering and pumping procedures;
- Removal of existing vegetation within, and protection of vegetation in close proximity to, the works area and access route;
- Confirmation of stone size gradation;
- Construction of an appropriate transition at the upstream and downstream tie-in points; and
- Restoration planting of native shrubs and trees, and Terraseeding of native seed mix.

Head Office:

Erosion and Sediment Control Measures – Erosion protection shall be used on regraded banks to provide erosion protection prior to the establishment of a vegetative cover.

Inspection of ESC measures should be completed regularly during the construction process to ensure that erosion and sediment control measures are functioning as intended and to address any immediate concerns. Similarly, monitoring of erosion control works should be completed following any flooding event to ensure that erosion control blankets and plantings are not compromised as a result of the event. The inspection and monitoring should be completed by an engineer, environmental inspector, or representative of Aquafor Beech Ltd.

Timing – Construction timing is restricted for fisheries protection. The Indian River provides habitat to both spring and fall spawning species. As such, no in-water works may occur between October 1 to July 15 of any given year to respect spring and fall spawning species for the MNR Southern Region. All tree removals on the site must take place outside of the period from April 1 to September 30, which is inclusive of the typical bird nesting season (April 1 to August 31) and the typical maternity roost season (April 1 - September 30).

Fish Removal – An initial fish rescue will be required once the in-water work area has been isolated; the fish rescue will be completed prior to dewatering the work area. Subsequent fish rescues will be required if the coffer dam isolating the work area is overtopped by high flows in the river. The contractor will be responsible for coordinating with the qualified aquatic biologist for fish rescues.

Construction Methodology – The channel bank and bed works must be undertaken in the dry. Dry working conditions will be created by blocking the perimeter of the work zone with coffer dams and routing the water around the work zone (dam and flume techniques). Additional precautions and procedures, specified in the detailed drawings, include:

- All practical measures will be implemented to maintain the work zone in good condition;
- Utilities will be located and protected;
- Equipment refuelling will take place in the designated staging area, a minimum of 30 m from the watercourse; and
- All erosion and sediment control measures will be maintained in good working order.

Site Access – Access for construction is proposed from Norman Street, which will require temporary singe-lane closure. The access routes are shown on Sheet 4 of the drawing set. Any changes to the access routes must be approved by the City and the field engineer.

Vegetation – To minimize the rate of erosion, it is desirable to establish vegetation quickly where it has been specified. Potted shrubs, potted trees, and a native seed mix (to be applied by Terraseeding) will be used to restore the site. Onsite consideration should be given to the season and prevailing light conditions for planting. If construction occurs after October, plantings should be completed as soon as possible in the following spring season.

8 CONSTRUCTION COST ESTIMATION

Preliminary construction costs have been estimated based on a schedule of quantities from the detailed design presented here. The construction cost estimate is \$99,204 which includes a 20% contingency but is exclusive of

April 1st, 2022

HST. The detailed schedule of quantities showing the breakdown of costs is provided on the following page in **Table 8-1**.

Branch Office: 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

April 1st, 2022

Table 8-1: Construction Cost Estimate for Reconstruction of Outfall 56

	PEMBROKE OUILEIS - OUILET # 50	6				
	City of Pembroke					
Item	Description	Qty	Unit	Unit Price	Extended Price (Excl HST)	
Section "A" – Site Preparation & Removals						
1	Bonds and Insurance	1	LS	\$8,000	\$8,000	
2	Field Office	1	LS	\$3,000	\$3,000	
3	Construction Layout, Utility & Locates	1	LS	\$8,000	\$8,000	
4	Mobilization & Demobilization	1	LS	\$10,000	\$10,000	
5	Access Route, Mud Mat & Staging Areas	1	LS	\$8,000	\$10,000	
6	Clearing, Grubbing, and Vegetation Removal	1	LS	\$5,000	\$5,000	
8	Supply, Install & Remove Temporary Construction Fence	25	m	\$15	\$375	
9	Supply, Install & Remove Silt Socks	35	m	\$20	\$700	
10	Removal & Disposal of Sediment	1	LS	\$3,000	\$3,000	
	Subtotal Section A (Excl of HST)				\$48,075	
	Section "B" – Sewer Works, Channel Works and	Restor	ration		-	
11	Excavate, Earthwork, Grading & Disposal of Materials	1	LS	\$2,000	\$2,000	
12	Supply & Placement of Angular Channel Substrate	35	tonne	\$200	\$7,000	
13	Supply & Placement of Galvanised End Section fro 12" CSP	2	ea	\$600	\$1,200	
14	Supply & Placement of Boulders	3	ea	\$500	\$1,500	
15	Supply & Placement of Erosion Control Blanket - Coir Mat	45	m ²	\$8	\$360	
16	Supply & Placement of Topsoil for Restoration (300mm for terraseed area & 150mm for Sod)	15	m³	\$50	\$750	
17	Supply & Application of Terraseed Mixture	45	m ²	\$8	\$360	
18	Supply & Planting of Trees (5 gal potted @ min 2.5m spacing)					
	ii) Red Maple	1	ea	\$250	\$250	
	ii) Eastern White Cedar	1	ea	\$250	\$250	
	iii) Basswood	1	ea	\$250	\$250	
19	Supply & Planting of Shrubs (2 gal potted @ 1m spacing)					
	i) Alternate Leaved Dogwood	3	ea	\$45	\$135	
	ii) Chokecherry	2	ea	\$45	\$90	
	iii) Downy juneberry	3	ea	\$45	\$135	
	iv) Northern Fly Honeysuckle	3	ea	\$45	\$135	
	v) Wild Red Raspberry	2	ea	\$45	\$90	
	vi) Red-berried Elder	2	ea	\$45	\$90	
	Subtotal Section B (Excl of HST)				\$14,595	
	Section "C" – Provisional					
20	Replace/ Repair Asphalt Road	1	LS	\$10,000	\$10,000	
21	Migratory Nesting Bird Survey	1	LS	\$5,000	\$5,000	
22	Retain Certified Arborist	1	LS	\$5,000	\$5,000	
	Subtotal Section C (Excl of HST)				\$20,000	
	Section "D" – Contingency					
23	Contingency (20%)	1	LS	\$16,534	\$16,534	
	Subtotal Section D (Excl of HST)				\$16,534	

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

April 1st, 2022

Outlet # 56 Engineering Estimate (Inc. Contingency, Exc. HST)	\$99,20
Total Bid Price (Incl of taxes)	\$112,10
HST @ 13%	\$12,89
Sub Total (Exc of taxes)	\$99,20
Section "D" – Contingency	\$16,53
Section "C" – Provisional	\$20,00
Section "B" – Sewer Works, Channel Works and Restoration	\$14,59
Section "A" – Site Preparation & Removals	\$48,07

9 **REFERENCES**

Natural Resources Canada (2021). Plant hardiness of Canada. Retrieved from http://planthardiness.gc.ca/

Department of Fisheries and Oceans. (2021). Projects near water. Retrieved from Fisheries and Oceans Canada: http://www.dfo-mpo.gc.ca/pnw-ppe/index-eng.html

10 SIGNATURES

This project is being completed with input from the following consulting staff:

Dave Maunder – Project Manager Robert Amos – Water Resources Lead Golmar Golmohammadi – Water Resources Engineer Gabriel Dubé – Water Resources Specialist Yun Xia – Water Resources Specialist Palka Sharma – CAD Technician Julie Scott – Terrestrial Ecologist Jakub Ripley – GIS Specialist Darcy LaFramboise – Certified Arborist Graham Eby – Aquatic Biologist

Upon your review, should you have any questions or comments, please do not hesitate to contact the undersigned.

Maunder avid

Dave Maunder, M.Sc., P.Eng Project Manager Aquafor Beech Limited

Branch Office: 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

April 1st, 2022

Technical Memo for Design and Reconstruction of Storm Sewer Outfall # Unknown

1 INTRODUCTION

As part of the City-Wide Flood Risk Assessment and Storm Outlet Review, the City of Pembroke has requested an assessment of the condition on 17 of the City's storm sewer outfalls, complete with an inventory of the findings. After conducting the outfall assessment, Aquafor Beech reported a total of 9 outfalls in poor condition and in need of repair. The following Technical Memo provides an overview of the existing conditions of Outfall # Unknown as well as the Detailed Design of the proposed outfall reconstruction.

The study area and location of Outfall # Unknown are shown in **Figure 1-1**. The outfall pipe has a diameter of 300 mm and extends off of Paul Martin Drive, outletting atop a steep road embankment that connects to an outfall channel, which ultimately discharges into the Muskrat River immediately downstream of the Paul Martin Drive bridge crossing. Outfall # Unknown was identified to be in need of rehabilitation and was ranked as the 4th highest priority site, of the total 17 sites that were assessed.

Figure 1-1: Location of Study Area for Storm Sewer Outfall # Unknown

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 1

www.aquaforbeech.com

April 1st, 2022

2 EXISTING CONDITIONS

2.1 Overview

Outfall # Unknown consists 300 mm CSP sewer pipe that outlets atop the embankment of Paul Martin Drive (Figure 2-1). Holes have developed at the bottom of the CSP due to rust corrosion. Water exiting the pipe flows down the steep embankment slope (exceeding 1.35H:1V), over which a geotextile erosion blanket has been placed to mitigate erosion (Figure 2-2).

An outfall channel (Figure 2-3) collects water from both from Outfall # Unknown and from a culvert passing under International Drive. The total length of the channel is roughly 110 m, though the length of channel extending from Outfall # Unknown to the Muskrat River is only ~23 m. Despite erosion control consisting of roundstone placed overtop geotextile, severe erosion was noted along the downstream extents of the outfall channel, affecting a continuous channel length of 34 m. This included bank erosion as well as scouring of roundstone, which exposed the underlying geotextile erosion protection. Much the displaced roundstone settled as an outwash fan at the confluence with the Muskrat River (Figure 2-4).

Figure 2-1: Outlet and Eroded Bank

Figure 2-2: Eroded Bank at Outlet

Figure 2-3: Bank Erosion and Exposed Geotextile

Figure 2-4: Washed Out Swale

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 2

www.aquaforbeech.com

April 1st, 2022

2.2 **Topographic Survey**

A detailed topographic survey was completed from November 8th to November 19th in 2021 to record existing site conditions. Sufficient detail was captured to support the detailed design of the outfall reconstruction. Key parameters captured during the survey include:

- Longitudinal profile of the ground surface above the storm sewer pipe;
- Survey points to characterize the outfall channel (cross-sections, thalweg, top-of-bank, etc.), extending into the Muskrat River to capture streambed tie-in elevations;
- Any visible storm sewer infrastructure near the outlet (invert and obvert, exposed pipe, etc.);
- Top and bottom of bank elevations along the Muskrat River, extending approximately 5-10 m upstream and downstream of the confluence with the outfall channel; and
- Additional ground shots within the outfall channel to capture erosion. ٠

The survey was completed using a high-precision GPS instrument that was referenced to the NAD83 UTM Zone 18N horizontal coordinate system and the CGVD2013 vertical datum. A DEM derived from LiDAR data collected between 2019-2020 by Natural Resources Canada was used to complement the topographic survey data, allowing for elevations to be determined beyond the extents of the survey.

2.3 **Geotechnical Investigation**

A detailed geotechnical investigation was undertaken by GEMTEC within the study area on February 15th, 2022. The assessment was intended to define and characterize the subsurface soil conditions, inform the design of the proposed outfall reconstruction, and make recommendations regarding slope stabilization measures. One (1) borehole designated as 22-03 was advanced to a depth of 6.1 m below grade using portable drilling equipment.

Soil samples were obtained at regular intervals in the overburden soils with a 51 mm diameter Standard Penetration Test split-spoon sample. This was done in accordance with ASTM Standard D-1586, which provides the penetration resistance (N-value) of the soils. Soil samples were examined in the field for type, texture and colour to classify each soil layer identified. The samples were sealed in air tight plastic bags and transferred to GEMTEC's laboratory for further examination and selection of appropriate samples for laboratory testing. Dynamic cone penetration testing (DCPT) was also carried out in this borehole. The results of the geotechnical investigation, along with a borehole location plan, are included in Appendix I.

Fill material was encountered at the surface of the borehole, extending to 1.7 m below surface grade. The fill consisted of brown sand and gravel with some silt. The fill material was underlain by native deposits of sandy clay, extending to the sampling termination point of 4.3 m. The borehole was further advanced by means of a DCPT to the termination depth of 6.1 m. Blow counts recorded during the DCPT ranged from 30 to 52 blows per 300 mm. No groundwater was observed within the open borehole.

2.4 **Tree Inventory**

A comprehensive tree inventory was undertaken in the Outfall # Unknown study area in February, 2022 to identify trees that may potentially be removed or damaged to accommodate construction activities. A total of 10 trees were inventoried in the study area, including at any potentially suitable access and staging areas. Sheet

April 1st, 2022

5 in the detailed design drawings shows the locations of the surveyed trees within the Outfall # Unknown study area. **Table 2-1** provides a summary of the tree inventory results by species.

Table 2.1. Tree Inventen Cumments by Creeks

Tag #	Tag # Species Common Name Species Botanical Name		
822	Bur Oak	Quercus macrocarpa	Good
823	Manitoba Maple	Acer negundo	Fair
824	Eastern White Cedar	Thuja occidentalis	Good
825	Eastern White Cedar	Thuja occidentalis	Good
826	Eastern White Cedar	Thuja occidentalis	Good
827	Eastern White Cedar	Thuja occidentalis	Good
828	Eastern White Cedar	Thuja occidentalis	Good
829	Eastern White Cedar	Thuja occidentalis	Good
830	Eastern White Cedar	Thuja occidentalis	Good
NT1	Eastern White Cedar	Thuja occidentalis	Good

3 DESIGN FACTORS

At the outset of the design process, all opportunities, constraints, and considerations for the reconstruction of Outfall # Unknown were identified. This ensured that they were adequately considered during development of the detailed design. Constraints and considerations identified within the study area were as follows:

Disturbance to Terrestrial Vegetation – Some of the trees and other vegetation located within the study area may be harmed or removed during construction. However, space allowing, any mature trees that are required for removal to facilitate construction will be compensated with trees plantings at a 3:1 ratio, along with 5 shrubs planted for every 1 tree planted. If there is insufficient space near the study area to meet this replanting target, trees will be planted at a minimum 1:1 ratio, with 5 shrubs planted for every 1 tree planted. Tree species selection will be based on their nativity within the City of Pembroke, and seed mix composition will reflect typical vegetation found within Plant Hardiness Zone 4b (Natural Resources Canada, 2021).

Utilities – In addition to the storm sewer infrastructure identified during the background review of base mapping provided by the City, Aquafor has also completed an Ontario One Call utility locate request for the entire site identify all other utilities and any potential design conflicts.

Channel Bank Stabilization – Toe erosion and slope failures should be restored by regrading to attain a natural long-term stable slope, followed by the application of channel bank and toe erosion protection.

Upstream and Downstream Tie-In Points – Care must be taken to ensure that there is a smooth transition into, and out of, the proposed outfall design, such that the stability of the slope and channel banks are not compromised.

April 1st, 2022

4 DETAILED DESIGN

4.1 Principal Design Components

Detailed design drawings for Outfall # Unknown are provided under a separate cover. The proposed design consists of rehabilitating the downstream extents of the outfall channel by placing angular stone fill, which is intended to resist scouring. The reconstructed channel is to be 3 m wide and is to have a uniform gradient of 16%, before entering the Muskrat River at a 3H:1V slope. Banks are to be graded to 3H:1V and vegetated with native riparian seed mix, shrubs, and trees, in order to provide additional slope stability and resist erosion during high flow periods. The slope connecting the Outfall # Unknown to the outfall channel, which currently exceeds 1.35H:1V, is to be filled with angular stone and regraded to 3H:1V.

4.2 Wildlife Mitigation Measures

4.2.1 Breeding Birds

Tree removals should occur outside of the bird nesting window (generally April 1st to August 31st) to ensure that active nests of protected species are not harmed or destroyed and that the project is compliant with the *Migratory Birds Convention Act*. Individual trees or areas of low-complexity habitat could potentially be removed during the nesting window following an inspection to confirm the absence of active nesting in the area. However, this method is not recommended for complex habitats (e.g., mature woodland) due to the low detectability of nests in such areas, and is further not permitted if a restriction is placed on tree removal due to SAR bat habitat.

4.2.2 Bat Maternity Roosts

The active window for Ontario's SAR bats extends from April 1st to September 30th. The study area is inclusive of potential SAR bat habitat, and as such, tree removal is prohibited during this period.

4.2.3 In-Water Works Timing Windows and Fisheries Act

Discussions with MNRF (personal communication, March 15, 2022) confirmed that the Indian River provides habitat to both spring and fall spawning species. As a major watercourse, the Indian River contains fish at any time during any given year. Thus, no in-water works may occur between October 1 to July 15 of any given year to avoid works within the spring and fall spawning windows for the MNR Southern Region (March 15 - July 15 and October 1 - May 21, respectively).

4.2.4 DFO Self-assessment

The federal *Fisheries Act* requires that projects avoid causing the death of fish and the harmful alteration, disruption or destruction of fish habitat unless authorized by the Minister of Fisheries and Oceans Canada (DFO). This applies to work being conducted in or near waterbodies that support fish at any time during any given year or are connected to waterbodies that support fish at any time during any given year. As noted above, the study area does contain fish at any time during any given year. Therefore, the *Fisheries Act* applies to works conducted in or near water at the site.

As the proposed works include minor regrading and rock placement within the high-water mark of the channel, Aquafor will undertake a request for regulatory review under the federal *Fisheries Act*.

4.3 Vegetation Removals and Restoration

A detailed restoration plan is shown on Sheet 6 of the design drawings. As soon as possible following construction, all disturbed areas should be revegetated through application of an annual cover crop and native herbaceous seed mix in areas of disturbance. Native seed mix should include wildflowers (preferably including milkweed species) to promote wildlife habitat. Terraseeding is the preferred application to hydroseeding. The recommended annual cover crop consists of Canada Wild Rye (*Elymus canadensis*) (40%) and Annual Oats (*Avena sativa*) (60%) applied at a rate of 33 kg/ha. after the risk of frost (i.e., after March 31 and before October 31); if applied during the time of frost risk, the cover crop should be 100% Annual Oats at a rate of 33kg/ha.

In addition, interplanting with native trees and shrubs is recommended within the coastal floodplain where appropriate. Restoration within disturbed areas should be in keeping with existing communities, and interplanting should utilize vegetation appropriate to the target community. Such interplanting will aid in stabilizing the banks and will also enhance habitat for wildlife and aquatic species.

All species selected should be native, suitable to the site conditions, and reflect the diversity of species commonly found in local natural areas. Based on native species within Pembroke and the site's location within Plant Hardiness Zone 4b, suggested species and sizes are listed in **Table 4-1**, **Table 4-2**, and **Table 4-3**.

April 1st, 2022

Table 4-1: Native Seed Mixes							
Scientific Name	Common Name	% by Weight					
Nurse Crop Mix (Application Rate: 33 kg/ha)							
Elymus canadensis	Canada Wild Rye	40%					
Avena sativa	Annual Oats	60%					
Riparian Mix (Application Rate: 25 kg/ha)							
Anemonastrum canadensis	Canada Anemone	1%					
Apocynum cannibinum	Indian-hemp Dogbane	5%					
Asclepias incarnata ssp. incarnata	Swamp Milkweed	5%					
Bidens cernua	Nodding Beggarticks	2%					
Bidens frondose	Devil's Beggarticks	2%					
Carex granularis	Meadow/Open Field Sedge	20%					
Clematis viginiana	Virgin's Bower	4%					
Elymus virginicus var. virginicus	Virginia Wild Rye	10%					
Euthamia graminifolia	Grass-leaved Goldenrod	5%					
Juncus dudleyi	Dudley's Rush	10%					
Poa palustris	Fowl Bluegrass	25%					
Solidago canadensis	Canada Goldenrod	4%					
Symphyotrichum novae-angliae	New England Aster	1%					
Symphyotrichum puniceum	Purple Stemmed Aster	1%					
Verbena hastata	Blue Vervain	5%					

Table 4-2: Native Tree Plantings

Scientific Name	Common Name	Amount	Size
Picea glauca	White Spruce	1	5 gal. potted
Quercus macrocarpa	Bur Oak	1	5 gal. potted
Thuja occidentalis	Eastern White Cedar	1	5 gal. potted

Table 4-3: Native Shrub Plantings

Scientific Name	Common Name	Amount	Size
Amelanchier arborea	Downy Juneberry	3	2 gal. potted
Cornus racemosa	Grey dogwood	3	2 gal. potted
Cornus stolonifera	Red osier dogwood	3	2 gal. potted
Prunus virginiana	Chokecherry	2	2 gal. potted
Salix lucida	Shining Willow	2	2 gal. potted
Salix petiolaris	Slender Willow	2	2 gal. potted

Head Office:

Branch Office: 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

4.3.1 Removal Timing Window and Protection Measures

It will be necessary to remove some trees and other vegetation to facilitate the proposed works. Of the 10 live trees identified during the assessment (detailed previously in **Table 2-1**), 1 has been identified for removal. The tree identified for removal is shown in **Table 4-4** below and on Sheet 5 of the detailed design drawings. Tree removals on the site should take place outside of the typical bird nesting and bat maternity roost season (collectively April 1 to September 30).

Construction activities can have adverse effects on nearby trees that are to remain in place and should not be disturbed by the proposed works. Tree protections measures, consisting of page wire hoarding specified on Sheet 4 of the detailed design drawings, should be followed in order to mitigate against potential damages.

Table 4-4: Tree Identified for Removal

Tag #	Species Common Name	Species Botanical Name	Condition				
824	Eastern White Cedar	Thuja occidentalis	Good				

5 EASEMENT REQUIREMENTS

Aquafor was provided the property fabric by the City of Pembroke on March 7, 2022. In all cases, an OLS should be retained to confirm property parcels and associated limits. In some cases, it may be necessary to require temporary or permanent easements.

6 PERMITS AND APPROVALS

6.1 MNRF Fish Collection Permit

As de-watering will be required to accommodate construction, a fish rescue must be conducted. It will therefore be necessary to obtain a fish collection permit from the MNRF prior to construction. In addition, the dewatering and fish rescue must be conducted in accordance with MNRF timing windows to reduce harm to aquatic species, with no in-water works occurring between October 1 to July 15 (as discussed in **Section 4.2.3**). In the event that the work area becomes inundated following a significant rainfall event, fish rescues will be required prior to continuing instream works.

6.2 Provincial Species at Risk – MECP 17(2) (b/c) Species at Risk Permit

Prior to implementation, the study area should be subject to a Species at Risk (SAR) screening to identify any potential conflicts and ensure compliance with applicable legislation. Screening should be completed by consulting background information and agencies (MECP) to identify potential species associations, and assessing the potential for those species to occur in the study area based on their habitat requirements as compared to the habitat present on site. Mitigation measures to prevent or minimize impacts to species should be developed. If endangered or threatened species will potentially be impacted by the project, an Information Gathering Form (IGF) should be prepared and submitted to the MECP so that they may review the project and advise on requirements under the *Endangered Species Act*. Such requirements may include: implementation of additional mitigation measures as specified by MECP; registering the project via a Notice of Activity under a regulatory exemption; or preparation of an Overall Benefit Permit (OBP) package to address impacts to protected species

April 1st, 2022

or habitat. Please note that the review period for an OBP, if such is required, is currently estimated at nine months to one year.

6.3 Department of Fisheries and Oceans Request for Review

As noted in **Section 4.2.4**, the detailed design will be submitted to DFO for review under the federal *Fisheries Act*.

7 CONSTRUCTION REQUIREMENTS

Construction Supervision – To ensure that the objectives of the outfall rehabilitation design are realized, it is important that someone with experience in channel design and restoration be part of the construction supervision (i.e., a qualified professional or representative of Aquafor Beech Ltd.). The supervision will enable construction issues to be addressed quickly and appropriately and ensure that important design details such as those listed below are implemented:

- Implementation of functional erosion and sediment control measures, including dewatering and pumping procedures;
- Removal of existing vegetation within, and protection of vegetation in close proximity to, the works area and access route;
- Confirmation of stone size gradation;
- Construction of an appropriate transition at the upstream and downstream tie-in points; and
- Restoration planting of native shrubs and trees, and Terraseeding of native seed mix.

Erosion and Sediment Control Measures – Erosion protection shall be used on regraded banks to provide erosion protection prior to the establishment of a vegetative cover.

Inspection of ESC measures should be completed regularly during the construction process to ensure that erosion and sediment control measures are functioning as intended and to address any immediate concerns. Similarly, monitoring of erosion control works should be completed following any flooding event to ensure that erosion control blankets and plantings are not compromised as a result of the event. The inspection and monitoring should be completed by an engineer, environmental inspector, or representative of Aquafor Beech Ltd.

Timing – Construction timing is restricted for fisheries protection. The Indian River provides habitat to both spring and fall spawning species. As such, no in-water works may occur between October 1 to July 15 of any given year to respect spring and fall spawning species for the MNR Southern Region. All tree removals on the site must take place outside of the period from April 1 to September 30, which is inclusive of the typical bird nesting season (April 1 to August 31) and the typical maternity roost season (April 1 - September 30).

Fish Removal – An initial fish rescue will be required once the in-water work area has been isolated; the fish rescue will be completed prior to dewatering the work area. Subsequent fish rescues will be required if the coffer dam isolating the work area is overtopped by high flows in the river. The contractor will be responsible for coordinating with the qualified aquatic biologist for fish rescues.

Construction Methodology – The channel bank and bed works must be undertaken in the dry. Dry working conditions will be created by blocking the perimeter of the work zone with coffer dams and routing the water

April 1st, 2022

around the work zone (dam and flume techniques). Additional precautions and procedures, specified in the detailed drawings, include:

- All practical measures will be implemented to maintain the work zone in good condition;
- Utilities will be located and protected;
- Equipment refuelling will take place in the designated staging area, a minimum of 30 m from the watercourse; and
- All erosion and sediment control measures will be maintained in good working order.

Site Access – Access routes are shown on Sheet 6 of the drawing set, along with a staging and storage area. Access for construction is proposed from Paul Martin Drive, which will require temporary lane closure. The existing 5 m long guard rail is to be removed prior construction to facilitate site access, and is to be replaced upon completion of construction. Any changes to the access routes or staging area locations must be approved by the City and the field engineer.

Vegetation – To minimize the rate of erosion, it is desirable to establish vegetation quickly where it has been specified. Potted shrubs, potted trees, and a native seed mix (to be applied by Terraseeding) will be used to restore the site. Onsite consideration should be given to the season and prevailing light conditions for planting. If construction occurs after October, plantings should be completed as soon as possible in the following spring season.

8 CONSTRUCTION COST ESTIMATION

Preliminary construction costs have been estimated based on a schedule of quantities from the detailed design presented here. The construction cost estimate is \$341,940 which includes a 20% contingency but is exclusive of HST. The detailed schedule of quantities showing the breakdown of costs is provided on the following page in **Table 8-1**.

Table 8-1: Construction Cost Estimate for Reconstruction of Outfall # Unknown

	PEMBROKE OUTLEIS - OUTLET # UNKNOWN					
City of Pembroke						
Item	Description	Qty	Unit	Unit Price	Extended Price (Excl. HST)	
	Section "A" – Site Preparation & Remova	ıls				
1	Bonds and Insurance	1	LS	\$10,000	\$10,000	
2	Field Office	1	LS	\$3,000	\$3,000	
3	Construction Layout, Utility & Locates	1	LS	\$8,000	\$8,000	
4	Mobilization & Demobilization	1	LS	\$10,000	\$10,000	
5	Access Route, Mud Mat & Staging Areas	1	LS	\$12,000	\$10,000	
6	Clearing, Grubbing, and Vegetation Removal Including Removal and Reinstalling Guard Rail	1	LS	\$10,000	\$10,000	
7	Supply, Install & Remove Temporary Tree Hoarding/Construction Fence	15	m	\$15	\$225	
8	Supply, Install & Remove Temporary Erosion and Sediment Control Fence	80	m	\$20	\$1,600	
9	Stream Control, Bypass Pumping & Dewatering	1	LS	\$12,000	\$12,000	
10	MNRF Fish Collection Permit and Fish Rescues	1	LS	\$5,000	\$5,000	
	Subtotal Section A (Excl of HST)				\$69,825	
	Section "B" – Sewer Works, Channel Works and	Restor	ation			
12	Excavate, Earthwork, Grading & Disposal of Materials	1	LS	\$8,000	\$8,000	
17	Supply & Placement of Angular Channel Substrate	780	tonne	\$200	\$156,000	
19	Supply & Placement of Erosion Control Blanket - Coir Mat	315	m ²	\$8	\$2,520	
20	Supply & Placement of Topsoil for Restoration (300mm)	95	m ³	\$50	\$4,750	
21	Supply & Application of Terraseed Mixture	315	m ²	\$8	\$2,520	
23	Supply & Planting of Trees (5 gal potted @ min 2.5m spacing)					
	i) Bur Oak	1	ea	\$250	\$250	
	ii) White Spruce	1	ea	\$250	\$250	
	iii) Eastern White Cedar	1	ea	\$250	\$250	
23	Supply & Planting of Shrubs (2 gal potted @ 1m spacing)					
	i) Red Osier Dogwood	3	ea	\$45	\$135	
	ii) Chokecherry	2	ea	\$45	\$90	
	iii) Grey Dogwood	3	ea	\$45	\$135	
	iv) Downy juneberry	3	ea	\$45	\$135	
	v) Shining Willow	2	ea	\$45	\$90	
	vi) Slender Willow	2	ea	\$45	\$90	
Subtotal Section B (Excl of HST)						
	Section "C" – Provisional					
24	Asphalt Road Repair (Removal, Granular Placement, New Asphalt, Buffer Restoration)	1	LS	\$30,000	\$30,000	
25	Migratory Nesting Bird Survey	1	LS	\$5,000	\$5,000	
26	Retain Certified Arborist	1	LS	\$5,000	\$5,000	
	Subtotal Section C (Excl of HST)				\$40,000	

Head Office:

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

April 1st, 2022

Contingency (20%)	1	LS	\$56,990	\$56,990
Subtotal Section D (Excl of H	ST)			\$56,990
Section "A" – Site Preparation & Removals				\$69,825
Section "B" - Sewer Works, Channel Works and Restoration				\$175,125
Section "C" – Provisional				\$40,000
Section "D" – Contingency				\$56,990
Sub Total (Exc of taxes)				\$341,940
HST @ 13%				\$44,452
Total Bid Price (Incl of taxes)				\$386,392
Outlet # UNKNOWN Engineering Estimate (Inc. (Contingency, Exc. F	IST)		\$341,94

9 REFERENCES

Natural Resources Canada (2021). Plant hardiness of Canada. Retrieved from http://planthardiness.gc.ca/

Department of Fisheries and Oceans. (2021). Projects near water. Retrieved from Fisheries and Oceans Canada: http://www.dfo-mpo.gc.ca/pnw-ppe/index-eng.html

10 SIGNATURES

This project is being completed with input from the following consulting staff:

Dave Maunder – Project Manager Robert Amos – Water Resources Lead Golmar Golmohammadi – Water Resources Engineer Gabriel Dubé – Water Resources Specialist Yun Xia – Water Resources Specialist Palka Sharma – CAD Technician Julie Scott – Terrestrial Ecologist Jakub Ripley – GIS Specialist Darcy LaFramboise – Certified Arborist Graham Eby – Aquatic Biologist

Upon your review, should you have any questions or comments, please do not hesitate to contact the undersigned.

April 1st, 2022

claved Maunder

Dave Maunder, M.Sc., P.Eng Project Manager Aquafor Beech Limited

2600 Skymark Ave, Building 6, Suite 202, L4W 5B2 Tel: 905-629-0099 Fax: 905-629-0089 **Branch Office:** 55 Regal Road, Unit 3, Guelph, Ontario, N1K 1B6 Tel: 519-224-3740 • Fax: 519-224-3750

Page 13

www.aquaforbeech.com

APPENDIX I

Draft Geotechnical Investigation Report

Geotechnical Investigation for the City of Pembroke Flood Risk Assessment and Storm Outlets Pembroke, Ontario

Submitted to:

Aquafor Beech Ltd. 55 Regal Road, Unit 3 Guelph, Ontario N1K 1B6

Geotechnical Investigation for the City of Pembroke Flood Risk Assessment and Storm Outlets Pembroke, Ontario

> March 25, 2022 Project: 101078.001

GEMTEC Consulting Engineers and Scientists Limited 142 Industrial Avenue Petawawa ON, Canada K8H 2W8

March 25, 2022

File: 101078.001

Aquafor Beech Ltd. 55 Regal Road, Unit 3 Guelph, Ontario N1K 1B6

Attention: Mr. Dave Maunder

Re: Geotechnical Investigation for the City Wide Flood Risk Assessment and Storm Outlets, Pembroke, Ontario

Please find enclosed the GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) Geotechnical Investigation report for the City Wide Flood Risk Assessment and Storm Outlets as described in the City of Pembroke Request For Proposal No. P-21-09 located in Pembroke, Ontario.

A geotechnical investigation was conducted to assess the existing subsurface soil conditions at the requested stormwater outlets in order to present geotechnical recommendations pertaining to the reconstruction and stabilization design of the new outlets.

We trust that this report provides sufficient information for your purposes. Should you have any questions or require additional information concerning this report, please do not hesitate to contact the undersigned.

Sincerely,

GEMTEC Consulting Engineers and Scientists Limited

Brent Wiebe, P.Eng Vice President of Operations - Ontario

_Toc99265360	
1.0 INTRODUCTION	1
1.1 General	1
1.2 Background Information	1
1.3 Review of Geology Maps	2
2.0 METHODOLOGY	
2.1 Geotechnical Field Investigation	2
3.0 SUBSURFACE CONDITIONS	
3.1 General	
3.2 Soil Stratigraphy	
3.2.1 Borehole 22-01 (Christie Street – Outlet 41)	
3.2.2 Borehole 22-02 (Boundary Road Pathway – Outlet 35)	
3.2.3 Borehole 22-03 (Paul Martin Drive – No Outlet Number)	
3.2.4 Borehole 22-04 (Everett Street – Outlet 42)	
3.2.5 Borehole 22-05 (Norman Street – Outlet 56)	
3.2.6 Borehole 22-06 (Murray Street – Outlet 46)	
3.2.7 Borehole 22-07 (Doran Street – Outlet 45)	
3.2.8 Borehole 22-08 (Moffatt Street – Outlet 31)	
3.2.9 Borehole 22-09 (Margaret Street – Outlet 27)	
4.0 GEOTECHNICAL RECOMMENDATIONS	
4.1 General	
4.2 Excavations	
4.3 Pipe Bedding, Cover and Trench Backfill	
4.4 Construction Dewatering	
4.5 Erosion Protection	
5.0 SLOPE STABILIZATION ASSESSMENT	
5.1 Overview	
5.1.1 Slope Stabilization Alternatives	
5.1.1.1 Outlet and Riverbank Support	
5.1.2 Slope Erosion Protection	
5.1.3 Slope Stability Assessment	
5.2 Detailed Design	
5.3 Disposal of Excess Soil	
6.0 CLOSURE	18

TABLE OF CONTENTS

LIST OF TABLES

Table 3.1: Borehole Numbers and Termination Depths	3
Table 4.1: Summary of Estimated Groundwater Levels (at Time of Investigation)	12
Table 5.1: Summary of Slope Assessment at Outlets	13

LIST OF APPENDICES

hristie Street – 0	Outlet 41
	hristie Street – 0

- Appendix B Boundary Road Pathway Outlet 35
- Appendix C Paul Martin Drive No Outlet #
- Appendix D Everett Street Outlet 42
- Appendix E Norman Street Outlet 56
- Appendix F Murray Street Outlet 46
- Appendix G Doran Street Outlet 45
- Appendix H Moffatt Street Outlet 31
- Appendix I Margaret Street Outlet 27

1.0 INTRODUCTION

1.1 General

This report presents the results of a geotechnical investigation for the City of Pembroke's Flood Risk Assessment and Storm Outlet project. The purpose of the investigation was to identify the general subsurface conditions at nine outlet locations by means of a limited number of boreholes and, based on the factual information obtained, to:

- Provide engineering guidelines on the geotechnical design aspect of the proposed outlet reconstruction including construction considerations that could influence design decisions, and;
- b) Develop possible slope stabilization alternatives, where applicable.

The storm outlet locations are located along the Muskrat and Indian Rivers within the City of Pembroke. The nine outlet locations investigated are as follows:

Christie Street – Outlet 41	Boundary Road Pathway – Outlet 35
Paul Martin Drive – No Outlet #	Everett Street – Outlet 42
Norman Street – Outlet 56	Murray Street – Outlet 46
Doran Street – Outlet 45	Moffatt Street – Outlet 31
Margaret Street – Outlet 27	

A Site Plan and Cross-Section for each outlet location is provided in the Appendices of this report. It is noted that these plans were provided to GEMTEC by Aquafor Beech Limited. GEMTEC has not carried out surveying of the slope profiles at the outlet locations.

1.2 Background Information

It is noted that GEMTEC has previously carried out an extensive slope stability investigation for Moffatt Street in the City of Pembroke. This work was carried out directly for the City of Pembroke. It is noted that portions of the current investigation are within the boundaries of the scope of work previously carried out by GEMTEC, namely Outlet 31. The recommendations provided herein are in no way intended to supersede global recommendations provided for the Moffatt street slope stability report previously provided by GEMTEC to the City of Pembroke. Discussions regarding implementations of remediation at Outlet 31 in conjunction with any other work carried out by the City of Pembroke as part of wider slope stabilization measures could be provided as required and it is recommended GEMTEC be contacted to ensure that recommendations have been interpreted as intended and align with recommendations provided for the broader Moffatt Street investigation.

1

1.3 Review of Geology Maps

Based on our review of available geology maps, the subject sites are underlain by alluvial deposits composed of clay, silt, sand, and gravel and fine-textured glaciomarine deposits of silt and clay. The bedrock is mapped as sandstone, shale, limestone, and dolostone of the Rockcliffe formation.

2.0 METHODOLOGY

2.1 Geotechnical Field Investigation

The geotechnical field investigation consisted of advancing nine (9) boreholes designated 22-01 to 22-09 at the locations shown on the Borehole Location Plans, presented as Figure A1 thru I1 in the Appendices. A complete description of the stratigraphy encountered at each borehole location is presented on the Record of Borehole sheets.

The geotechnical investigation was completed between February 11 and 16, 2022 using portable drilling equipment and March 14 to 16, 2022 using a truck-mounted drill operating under the supervision of experienced GEMTEC personnel. Soil samples were obtained at regular intervals in the overburden soils with a 51-millimetre diameter Standard Penetration Test split-spoon sampler. Sampling procedures were performed in accordance with ASTM Standard D-1586, which provides the penetration resistance (N-value) of the soils. In situ vane shear testing was carried out in the boreholes to measure the undrained shear strength of the silty clay deposits. Dynamic cone penetration testing (DCPT) was carried out in boreholes 22-03 and 22-04.

Soil samples were examined in the field for type, texture and colour to classify each soil layer identified. The samples were sealed in air tight plastic bags and transferred to GEMTEC's laboratory for further examination and selection of appropriate samples for laboratory testing.

Groundwater conditions within the boreholes were observed during the course of the field investigation and prior to backfilling.

The borehole locations were determined using a Trimble R10 GPS survey instrument. The elevations are referenced to Geodetic datum.

Table 3.1 summarizes the borehole numbers and final termination depths.

Street/ Outlet No.	Borehole No.	Depth Below Ground Surface (m)	Comment	
Christie / 41	22-01	4.3	Borehole terminated within silty clay	
Boundary / 35	22-02	4.9	Borehole terminated within lean clay	
Paul Martin / NA	22-03	6.1	Borehole terminated at termination depth with DCPT	
Everett / 42	22-04	10.2	Borehole terminated due to DCPT refusal	
Norman / 56	22-05	8.2	Borehole terminated within glacial till	
Murray / 46	22-06	4.6	Borehole terminated within silty clay	
Doran / 45	22-07	4.6	Borehole terminated within silty clay	
Moffatt / 31	22-08	9.8	Borehole terminated within silty clay	
Margaret / 27	22-09	18.9	Borehole terminated within glacial till	

Table 3.1: Borehole Numbers and Termination Depths

3.0 SUBSURFACE CONDITIONS

3.1 General

As previously indicated, the soil and groundwater conditions identified in the test holes are given on the Record of Borehole sheets. The logs indicate the subsurface conditions at the specific test locations only. Boundaries between zones on the logs are often not distinct, but rather are transitional and have been interpreted. The precision with which subsurface conditions are indicated depends on the method of exploration, the frequency and recovery of samples, the method of sampling, and the uniformity of the subsurface conditions. Subsurface conditions at other than the test locations may vary from the conditions encountered in the test holes. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the sites or on adjacent properties.

The groundwater conditions described in this report refer only to those observed at the place and time of observation noted in the report. These conditions may vary seasonally or as a consequence of construction activities in the area.

The soil descriptions in this report are based on commonly accepted methods of classification and identification employed in geotechnical practice. Classification and identification of soil involves judgement and GEMTEC does not guarantee descriptions as exact, but infers accuracy to the extent that is common in current geotechnical practice.

The following presents an overview of the subsurface conditions encountered in the test holes advanced during the field investigation.

3.2 Soil Stratigraphy

3.2.1 Borehole 22-01 (Christie Street – Outlet 41)

The following provides a summary of the soil stratigraphy encountered at borehole 22-01:

- A 75 millimetre thick topsoil layer was encountered at ground surface. The topsoil is underlain by about one metre of fill material composed of brown sand and silt with trace gravel. The fill was found to be frozen at the time of the investigation.
- Native deposits of brown becoming grey sand with silt were encountered below the fill material at a depth of about 1.1 metres. The sand with silt deposits have a thickness of about 2.1 metres and extend to a depth of about 3.2 metres below existing grade. Standard Penetration Test results (N values) recorded in the sand with silt ranged from 3 to 9 blows per 300 millimetres indicating a very loose to loose relative density. One grain size distribution test was carried out on a sample of the sand and silt (refer to the Soil Grading Chart in Appendix A).
- The sand with silt is underlain by grey silty clay which extends to the termination depth of borehole 22-01 at a depth of 4.3 metres below surface grade. Standard Penetration Test results (N values) recorded in the silty clay were 8 blows per 300 millimetres indicating a stiff to very stiff consistency. One particle size distribution analysis was carried out on a sample of the grey silty clay (refer to the Soil Grading Chart in Appendix A).
- Based on soil sample appearance, the groundwater level was estimated at about 2.1 metres below surface grade at the time of the investigation.

3.2.2 Borehole 22-02 (Boundary Road Pathway – Outlet 35)

The following provides a summary of the soil stratigraphy encountered at borehole 22-02:

- Fill material having a thickness of about 1.4 metres was encountered at ground surface. The fill material consists of about 200 millimetres of gravelly sand over brown silty clay fill with trace sand. The fill was frozen at the time of the investigation.
- Native deposits of dark grey to brown silty clay were encountered below the fill material at a depth of about 1.4 metres. The silty clay deposits were found to extend to the termination depth of borehole 22-02 at about 4.9 metres below surface grade. Standard Penetration Test results (N values) recorded in the silty clay ranged from 9 to 12 blows per 300 millimetres indicating a very stiff consistency. One particle size distribution analysis was

carried out on a sample of the brown silty clay (refer to the Soil Grading Chart in Appendix B)

• Based on soil appearance, the groundwater level was estimated to be at about 3.0 metres below surface grade at the time of the investigation.

3.2.3 Borehole 22-03 (Paul Martin Drive – No Outlet Number)

The following provides a summary of the soil stratigraphy encountered in borehole 22-03:

- Fill material was encountered at ground surface, extending to about 1.7 metres below surface grade. The fill material consists of brown sand and gravel with some silt. The fill was frozen at the time of our investigation. One grain size distribution test was carried out on a sample of fill (refer to the Soil Grading Chart in Appendix C).
- Native deposits of brown sandy clay were encountered below the fill material at a depth of about 1.7 metres. The sandy clay deposits extend to the sampling termination point of borehole 22-03 at a depth of about 4.3 metres below ground surface. Standard Penetration Test results (N values) recorded in the sandy clay ranged from 32 to 48 blows per 300 millimetres indicating a compact relative density. One particle size distribution analysis was carried out on a sample of sandy clay (refer to the Soil Grading Chart in Appendix C).
- Borehole 22-03 was further advanced by means of a dynamic cone penetration test (DCPT) to the termination depth of 6.1 metres. Blow counts recorded during the DCPT test ranged from 30 to 52 blows per 300 millimetres.
- Groundwater infiltration was not observed within the open borehole.

3.2.4 Borehole 22-04 (Everett Street – Outlet 42)

The following provides a summary of the soil stratigraphy encountered in borehole 22-04:

- A 1.2 metre thick fill layer was encountered at ground surface. The fill consists of dark brown sand and silt with some gravel. Large pieces of concrete debris were observed on the surface directly downstream of the outlet.
- Native deposits of dark grey clayey sand were encountered below the fill material at a depth of about 1.2 metres. The clayey sand was found to have a thickness of about 1.8 metres and extends to a depth of about 3.0 metres below existing grade. Standard Penetration Test results (N values) recorded in the clayey sand ranged from 7 to 9 blows per 300 millimetres indicating a loose relative density. One grain size distribution test was carried out on a sample of the clayey sand (refer to the Soil Grading Chart in Appendix D).

- The dark clayey sand is underlain by dark grey clayey silt, which has a thickness of about 1.8 metres and extends to a depth of about 4.9 metres below ground surface. Standard Penetration Test results (N values) recorded in the clayey silt ranged from 12 to 44 blows per 300 millimetres indicating a stiff to very stiff consistency. One particle size distribution test was carried out on a sample of the clayey silt (refer to the Soil Grading Chart in Appendix D).
- The dark grey clayey silt is underlain by a deposit of dark grey silty clay which has a thickness of about 1.5 metres and extends to a depth of about 6.4 metres below surface grade. Standard Penetration Test results (N values) recorded in the silt clay ranged from 7 to 12 blows per 300 millimetres. In-situ shear vane testing was performed in the silty clay deposit. The values of undrained shear strength were recorded as 168 kilopascals which indicates a very stiff consistency. One particle size distribution test was carried out on a sample of the silty clay (refer to the Soil Grading Charts in Appendix D).
- The dark grey silty clay is underlain by a deposit of glacial till primarily composed of grey clayey sand and silt with some gravel. The glacial till was found to extend to the sampling termination depth of the borehole at about 7.0 metres below surface grade. A Standard Penetration Test Result (N value) recorded in the glacial till was 30 blows per 300 millimetres which indicates a compact relative density. One grain size distribution test was carried out on a sample of the glacial till (refer to the Soil Grading Chart in Appendix D).
- Borehole 22-04 was further advanced by means of a dynamic cone penetration test (DCPT) and terminated at a depth of about 10.2 metres due to refusal within the inferred glacial till on cobbles or boulders. Blow counts recorded during the DCPT test ranged from 14 to 58 blows per 300 millimetres.
- Based on soil sample appearance, the groundwater level was estimated to be at about 4.9 metres below surface grade at the time of the investigation.

3.2.5 Borehole 22-05 (Norman Street – Outlet 56)

The following provides a summary of the soil stratigraphy encountered in borehole 22-05:

- From the surface, a 50 millimetre layer of asphaltic concrete was encountered. Underlying the surficial layer of asphaltic concrete, a road base and subbase material was observed. The road base consisted of a brown crushed sand with gravel and some silt and has a thickness of about 150 millimetres. The subbase consists of a brown gravelly sand with trace silt and has a thickness of about 300 millimetres. The road base and subbase was frozen at the time of the investigation.
- Underlying the pavement structure, a fill material consisting of brown sand and silt with trace gravel was encountered. The fill was found to have a thickness of about 1.0 metre and extends to a depth of about 1.5 metres below surface grade. Standard Penetration Test results (N values) recorded in the fill were recorded as 35 blows per 300 millimetres indicating a dense relative density.

- Native deposits of brown silty sand were encountered below the fill material at a depth of about 1.5 metres. The silty sand deposit has a thickness of about 0.9 metres and extends to a depth of about 2.4 metres below surface grade. A Standard Penetration Test (N value) recorded in the silty sand was 6 blows per 300 millimetres, indicating a loose relative density. One grain size distribution test was carried out on a sample of the silt (refer to the Soil Grading Charts in Appendix E).
- The silty sand is underlain by brown to grey silty clay. The silty clay has a thickness of about 3.4 metres and extends to a depth of about 5.8 metres below existing grade. Standard Penetration Test results (N values) recorded in the silty clay ranged from 1 to 9 blows per 300 millimetres. In-situ shear vane testing was performed in the silty clay deposit. The undrained shear strength values ranged from 91 to 104 kilopascals which indicates a stiff to very stiff consistency. One particle size distribution analysis was carried out on a sample of the silty clay (refer to the Soil Grading Chart in Appendix E).
- The silty clay is underlain by glacial till composed of grey clayey sand and gravel. The glacial till was found to extend to the termination depth of borehole 22-05 at about 8.2 metres below surface grade. Standard Penetration Test results (N values) recorded in the glacial till ranged from 11 to 21 blows per 300 millimetres indicating a compact relative density.
- Based on soil sample appearance, the groundwater level was estimated to be at about 7.2 metres below surface grade at the time of the investigation.

3.2.6 Borehole 22-06 (Murray Street – Outlet 46)

The following provides a summary of the soil stratigraphy encountered in borehole 22-06:

- From the surface, a 50 millimetre layer of asphaltic concrete was encountered. Underlying the surficial layer of asphaltic concrete, a road base and subbase material was observed. The road base consisted of a brown crushed sand with gravel and some silt and has a thickness of about 160 millimetres. The subbase consists of a brown sand with some gravel and some silt and has a thickness of about 800 millimetres. The road base and subbase was frozen at the time of the investigation.
- Native deposits of brown silty sand were encountered below the pavement structure at a depth of about 1.0 metre. The silty sand deposit has a thickness of about 2.2 metres and extends to about 3.2 metres below surface grade. Standard Penetration Test results (N values) recorded in the silty sand ranged from 2 to 4 blows per 300 millimetres indicating a very loose relative density. One grain size distribution test was carried out on a sample of the silty sand (refer to the Soil Grading Charts in Appendix F).
- The silty sand is underlain by grey silty clay. The silty clay extends to the termination depth of borehole 22-06 at about 4.6 metres below surface grade. Standard Penetration Test results (N values) recorded in the silty clay ranged from 1 to 5 blows per 300

millimetres indicating a firm consistency. One particle size distribution analysis was carried out on a sample of the silty clay (refer to the Soil Grading Chart in Appendix F).

• Based on soil sample appearance, the groundwater level was estimated to be about 3.2 metres below surface grade at the time of the investigation.

3.2.7 Borehole 22-07 (Doran Street – Outlet 45)

The following provides a summary of the soil stratigraphy encountered in borehole 22-07:

- From the surface, a fill material consisting of dark brown to brown sand with some silt and trace gravel was encountered. The fill has a thickness of about 1.0 metre. The fill was frozen at the time of the investigation.
- Native deposits of brown silty sand with trace gravel were encountered below the fill. The silty sand deposits have a thickness of about 2.7 metres and extend to a depth of about 3.7 metres below surface grade. Standard Penetration Test results (N values) recorded in the silty sand range from 3 to 12 blows per 300 millimetres indicating a very loose to compact relative density. Split spoon sampler refusal was encountered at a depth of about 3.3 metres below surface grade on organic wood material. One grain size distribution test was carried out on a sample of the silty sand (refer to the Soil Grading Chart in Appendix G).
- The silty sand is underlain by grey silty clay. The silty clay extends to the termination depth of borehole 22-07 at about 4.6 metres below surface grade. A Standard Penetration Test (N values) recorded in the silty clay was 7 blows per 300 millimetres indicating a stiff consistency. One particle size distribution analysis was carried out on a sample of the silty clay (refer to the Soil Grading Charts in Appendix G).
- Based on soil sample appearance, the groundwater level was estimated to be at about 2.3 metres below surface grade at the time of the investigation.

3.2.8 Borehole 22-08 (Moffatt Street – Outlet 31)

The following provides a summary of the soil stratigraphy encountered in borehole 22-08:

- From the surface, a 40 millimetre layer of asphaltic concrete was encountered. Underlying the surficial layer of asphaltic concrete, a road base material was observed. The road base consisted of a brown crushed sand with gravel and some silt and has a thickness of about 200 millimetres.
- Underlying the pavement structure, a layer of fill consisting of brown silty sand with trace clay was encountered. The fill has a thickness of about 1.9 metres and extends to about 2.1 metres below surface grade. Standard Penetration Test results (N values) recorded in the fill range from 6 to 20 blows per 300 millimetres indicating a loose to compact relative

density. One grain size distribution test was carried out on a sample of the fill (refer to the Soil Grading Chart in Appendix H).

- A native deposit of brown sand with some silt was encountered below the fill material. The sand deposit has a thickness of about 2.8 metres and extends to a depth of about 5.0 metres below surface grade. Standard Penetration Test results (N values) recorded in the sand range from 4 to 15 blows per 300 millimetres indicating a loose to compact relative density. One grain size distribution test was carried out on a sample of the sand (refer to the Soil Grading Chart in Appendix H).
- The sand is underlain by grey silty clay. The silty clay extends to the termination depth of borehole 22-08 at about 9.8 metres below surface grade. Standard Penetration Test results (N values) recorded in the silty clay range from 2 to 14 blows per 300 millimetres. In-situ shear vane testing was performed in the silty clay deposit. The values of undrained shear strength were greater than 108 kilopascals which indicates a very stiff consistency. One particle size distribution analysis was carried out on a sample of the silty clay (refer to the Soil Grading Chart in Appendix H).
- Based on soil sample appearance, the groundwater level was estimated to be at about 4.3 metres below surface grade at the time of the investigation.

3.2.9 Borehole 22-09 (Margaret Street – Outlet 27)

The following provides a summary of the soil stratigraphy encountered in borehole 22-09:

- Fill material was encountered at surface, extending to about 1.8 metres depth. The fill is variable but can be described as brown sand and gravel to silty sand with trace asphaltic concrete. The upper portion of the fill was frozen at the time of our investigation. Standard Penetration Test results (N values) recorded in the fill range from 4 to 9 blows per 300 millimetres indicating a loose relative density. One grain size distribution test was carried out on a sample of the fill (refer to the Soil Grading Chart in Appendix I).
- A native deposit of brownish grey sandy silt were encountered below the fill material. The sandy silt deposit has a thickness of about 11.0 metres and extends to a depth of about 12.8 metres below surface grade. Standard Penetration Test results (N values) recorded in the sandy silt range from 4 to 15 blows per 300 millimetres indicating a loose to compact relative density. One particle size distribution test was carried out on a sample of the sandy silt (refer to the Soil Grading Charts in Appendix I).
- The sandy silt is underlain by grey silty clay. The silty clay has a thickness of about 5.8 metres and extends to a depth of about 18.6 metres below surface grade. Standard Penetration Test results (N values) recorded in the silty clay indicated 2 blows per 300 millimetres. In-situ shear vane testing was performed in the silty clay deposit. The values of undrained shear strength were recorded as being greater than 108 kilopascals which

indicates a very stiff consistency. One particle size distribution analysis was carried out on a sample of the silty clay (refer to the Soil Grading Chart in Appendix I).

- The silty clay is underlain by glacial till comprised of grey sand and silt with gravel. The glacial till extends to the termination depth of borehole 22-09 at about 18.9 metres below surface grade. A Standard Penetration Test result (N value) recorded in the glacial till was 13 blows per 300 millimetres, indicating a compact relative density.
- Based on soil sample appearance, the groundwater level was estimated to be at about 12.2 metres below surface grade at the time of the investigation.

4.0 GEOTECHNICAL RECOMMENDATIONS

4.1 General

As discussed in Section 1.0, the project may include reconstruction and replacement of the existing storm outlets and pipes.

4.2 Excavations

For the proposed reconstruction of the storm outlets and pipes, it is anticipated that the replacement pipes and outlets will be of similar size and depth below surface grade. The depth of excavation will vary from outlet to outlet based on existing slope of surface grade and the slope of the outlet pipe. The maximum depth of pipe is not anticipated to exceed 4 metres below surface grade at any of the sites.

The sides of the excavations in the overburden should be sloped in accordance with the requirements in Ontario Regulation 213/91 under the Occupational Health and Safety Act. According to the Act, the overburden soils can be classified as Type 3 and, accordingly, allowance should be made for excavation side slopes of 1 horizontal to 1 vertical, or flatter. As an alternative or where space constraints dictate, the service installations could be carried out within a tightly fitting, braced steel trench box, specifically designed for this purpose.

During the excavation process, no excavated material should be piled, nor machinery or equipment placed, closer than 2.0 metres from the edge of the top of slope. No vertical unbraced excavations should be performed in the soil.

An examination of the excavation slopes should be performed by a qualified geotechnical personnel before any worker enters the excavation. The exposed soil should be protected against erosion from water run-off or rain. Excavation side slopes should not be left exposed to inclement weather.

4.3 Pipe Bedding, Cover and Trench Backfill

The bedding for the proposed services should be in accordance with OPSD 802.010 and 802.031 for flexible and rigid pipes in overburden excavations. The pipe bedding material should consist of at least 150 millimetres of well-graded crushed stone meeting OPSS 1010 for Granular A.

In areas where the subsoils are disturbed or where unsuitable material (such as fill material, organic soil or existing trench backfill material) exists below the pipe subgrade level, the disturbed/unsuitable material should be removed and replaced with engineered granular fill such as OPSS Granular A or Granular B Type II or III. To provide adequate support for pipes in the long term in areas where subexcavation of material is required below design subgrade level, the excavations should be sized to allow a 1 horizontal to 2 vertical spread of granular material down and out from the bottom of the pipes. The use of clear crushed stone as bedding or subbedding material should not be permitted.

Cover material, from pipe spring line to at least 300 millimetres above the top of the pipe, should consist of granular material, such as OPSS Granular A.

The granular bedding and cover materials should be compacted in maximum 200-millimetre thick lifts to at least 95 percent of the Standard Proctor Maximum Dry Density (SPMDD) of the material.

In areas were the pipes are below or near hard surfaced areas, consideration should be given to the composition of the trench backfill and the potential for differential frost heaving between the area over the service trench and the adjacent asphalt surface. In these areas, acceptable native materials should be used as backfill between the roadway subgrade level and the depth of seasonal frost protection (ie. 1.8 metres below finished grade). The backfill materials within the zone of frost penetration should match the materials exposed on the trench walls. Backfill below the zone of seasonal frost penetration could consist of either acceptable native material or imported granular material conforming to OPSS Granular B Types I, II or III.

To minimize future settlement of the backfill and achieve an acceptable subgrade for any roadways, curbs, etc., the trench backfill should be compacted in maximum 300-millimetre thick lifts to at least 95 percent of the SPMDD.

4.4 Construction Dewatering

It is anticipated that any groundwater inflow from the overburden or surface water runoff into the excavation should be handled by pumping from within the excavations. Flatter side slopes or tightly fitting trench boxes may be necessary for excavations below the groundwater level due to sloughing of the excavation sidewalls. It is not expected that short term pumping during excavation will have a significant effect on nearby structures and services.

Water levels can be expected to vary on a seasonal basis with the highest levels occurring in the spring. In order to reduce the potential for groundwater pumping during excavation, consideration should be given to conducting construction during drier periods of the year (i.e. June to October).

Table 4.1 below provides the estimated groundwater level at each of the nine outlet locations based on soil sample appearance and observations within the open boreholes during the field investigation.

Location	Estimated Groundwater Level (mbgs)	Geodetic Elevation
Christie Street - Outlet 41	2.1 mbgs	116.6 m
Boundary St Pathway- Outlet 35	3.0 mbgs	122.3 m
Paul Martin Drive - No Outlet #	No Infiltration Observed	n/a
Everett Street - Outlet 42	4.9 mbgs	117.7 m
Norman Street - Outlet 56	7.2 mbgs	115.2 m
Murray Street - Outlet 46	3.2 mbgs	115.4 m
Doran Street - Outlet 45	2.3 mbgs	116.5 m
Moffatt Street - Outlet 31	4.3 mbgs	119.5 m
Margaret Street - Outlet 27	12.2 mbgs	116.4 m

Notes:

1. As indicated above, the estimated groundwater levels are based on visual and tactile observations at the time of the field investigation. No standpipe piezometers were installed as part of this investigation.

4.5 Erosion Protection

The outlets should be protected from erosion and scour using rip rap (refer to OPSD 810.010). The rip rap should be suitably sized and graded to prevent damage to the rip rap. The sizing and grading should take into consideration the flow velocities, ice buildup, ice damming effects, etc. at each individual outlet.

The rip rap should meet the requirements of OPSS 1004 and should be placed in accordance with OPSS 511. A non-woven geotextile meeting OPSS 1860 Class II requirements should be placed between the subgrade surface and the rip rap. All seams in the geotextile should be sewn or provided with at least 0.5 metres of overlap.

The geotextile and rip rap should be placed on undisturbed, native soil. All disturbed or deleterious material, such as construction debris, organic material, etc., should be removed from below the rip rap. Removal of vegetation may also be required. Excavation at the toe of the slope should be carefully planned and controlled to ensure excavation at the toe does not reduce the stability of the existing slope. For example, excavation and backfilling near the toe of the slope should be carried out in short sections. Excavation below the water level, where required, could be carried out "in the wet", provided that in water work is permitted and necessary permits have been obtained.

The rip rap should be placed to 0.5 metres above the high water mark and should be compacted by tamping with the bucket of the excavator. The thickness of the rip rap should be at least 1.5 times the maximum particle size.

To prevent undermining (i.e., erosion of the soil below the rock fill), we recommend that the underside of the rock fill extend to the approximate elevation of the creek bed adjacent to the slope.

The rock fill should be placed with a slope not steeper than 1.5 horizontal to 1 vertical and should be underlain by a nonwoven geotextile meeting OPSS 1860 Class II with 0.5 metre overlaps.

Consideration should be given to the carrying out the work at a time of year when the water level in the rivers are expected to be low, such as late summer/early fall.

5.0 SLOPE STABILIZATION ASSESSMENT

5.1 Overview

The nine storm outlets included as part of this investigation all terminate into the Indian and Muskrat Rivers. The banks of the rivers surrounding the outlets vary significantly in slope and height. The nine outlet locations were assessed by GEMTEC personnel using rating charts in Table 4.2 of the Ontario Ministry of Natural Resources Technical Guide – River and Stream Systems; Erosion Hazard Limit (2002). These assessments were used as a preliminary guide, to determine if any of the slopes within the vicinity of the outlets present a potential for slope stability failure and to identify where detailed assessments of the existing factor of safety is required.

Table 5.1 below summarizes the findings of the slope assessment using the MNR rating charts:

Location	Comments	Potential for Slope Failure
Christie Street Outlet 41	No active erosion; minimal slope height; pipe outlets near bottom of river bank	Low

Table 5.1: Summary of Slope Assessment at Outlets

Boundary Street Pathway Outlet 35	Minimal slope inclination; pipe outlet is broken and deteriorated contributing to active surface erosion	Low
Paul Martin Drive No Outlet #	Active surface erosion, pipe outlet is at top of slope; minimal slope inclination	Low
Everett Street Outlet 42	Active surface erosion; minimal slope inclination; pipe outlet is near top of slope	Low
Norman Street Outlet 56	Active surface erosion of river bank; steep slope inclination; pipe outlet is at top of slope	Moderate
Murray Street Outlet 46	No active erosion; minimal slope height; pipe outlets near bottom of river bank	Low
Doran Street Outlet 45	No active erosion; minimal slope height; pipe outlets near bottom of river bank	Low
Moffatt Street Outlet 31	Active surface erosion of river bank, moderate slope inclination, pipe outlet near top of slope	Slight
Margaret Street Outlet 27	Active bank erosion, steep slope inclination; pipe outlets near top of slope	Moderate

Based on the slope assessment for each of the nine outlets, three locations were identified as requiring further slope analysis to determine the existing factor of safety and possible remediation alternatives. They include Norman Street – Outlet 56; Moffatt Street – Outlet 31; and, Margaret Street – Outlet 27.

Furthermore, three locations were also identified as exhibiting active surface erosion from surface water runoff. These locations include Boundary Road Pathway – Outlet 35; Paul Martin Drive – No Outlet #; and, Everett Street – Outlet 42.

5.1.1 Slope Stabilization Alternatives

5.1.1.1 Outlet and Riverbank Support

Christie Street – Outlet 41, Murray Street – Outlet 46 and Doran Street – Outlet 45 were identified as having little to no erosion of the river bank or slope immediately adjacent to the outlet. In all three cases, the pipe outlet is below the water level or near the level of the adjacent river.

As mentioned in Section 4.5, the use of rip-rap should be considered around the outlet and river bank to provide protection from erosion and scour.

5.1.2 Slope Erosion Protection

Erosion from surface water runoff was identified at the Boundary Road Pathway – Outlet 35, Paul Martin Drive – No Outlet # and Everett Street – Outlet 42. In all three cases, the outlets are located near the top of the slope which was also found to have minimal slope inclination at all three locations. Based on the slope assessment, there is also a low potential for future slope failure based on the existing conditions.

To reconstruct the slope and protect it from future erosion the following alternatives are suggested:

Alternative	Strategy	Comments
Slope Re-grading	Re-grading the eroded slope by moving the crest of the slope into the tablelands. The location of the toe could be maintained.	In order to flatten the existing slopes, earth excavation and removal of any remaining vegetation is required. Furthermore, loss of the tableland area is required in order to construct the stabilization alternative.
Blast Rock / Rip-Rap Buttress	The eroded soil downstream of the outlets could be replaced with well graded blast rock or rip-rap inclined at 1.5 horizontal to 1 vertical, or flatter.	The location of the toe could be maintained which would prevent encroachment of the slope into the adjacent river. Some loss of the table land area and removal of existing vegetation may be required in order to accommodate an inclination of 1.5H:1V while maintain the location of the toe.
Reinforced Soil Slope	A reinforced soil slope could be constructed along the slope. A reinforced slope generally consists of excavating portions of the slope and rebuilding with compacted granular materials reinforced with plastic or steel grid reinforcement. A permanent erosion blanket is generally incorporated into the design to prevent erosion and promote vegetative growth.	In order to construct the reinforced slope, earth excavation and removal of existing vegetation (including trees) is required.

The slope erosion and stabilization alternatives presented above should be implemented and combined with the following erosion control measures:

- Following regrading or where a vegetated slope face is desired, a thin layer of topsoil could be placed along the slope face and seeded. A suitable erosion control blanket (i.e. double net, straw and coconut fibre blanket) should then be installed on the surface and secured using wood stakes. It is important that suitable vegetation be established over the slope. This could include special perennials such as crown vetch which is ideal for steep slopes and is commonly used along roadway embankments.
- Installation of toe erosion protection to prevent erosion of the toe of the slope (e.g. rip rap, riverstone, etc.). The type of toe erosion protection will depend on the anticipated flow velocities of the adjacent river and ice scour effects.

5.1.3 Slope Stability Assessment

Based on the preliminary assessment using Table 4.2 of the Ontario Ministry of Natural Resources Technical Guide – River and Stream Systems; Erosion Hazard Limit (2002) as a guide, three slopes within the vicinity of the outlets were determined to have a low to moderate potential for future slope instability and possible slope failure. These locations include Norman Street – Outlet 56, Moffat Street – Outlet 31 and Margaret Street – Outlet 27.

Active soil and bank erosion was observed at each of the three outlet locations. The slopes or river banks are relatively steep with a slope inclination ranging from about 16 degrees to 34 degrees and height of slope ranging from about 8 metres to 16 metres.

Based on the preliminary assessment, it is recommended that further slope stability analysis be completed using slope stability software to determine such factors as the existing slope factor of safety and the stability of the slope under seismic loading conditions. A more in-depth analysis will allow for the implementation of slope stabilization measures in order to decrease the probability of occurrence for a deeper slope failure. Such measures could include:

- Avoidance: This approach is essentially the "do nothing" alternative. For this case, no effort is made to reduce the probability of occurrence for a slope failure. In the higher risk areas, demolition of existing dwellings could be considered to reduce the consequences of a failure.
- External Toe Berm: Involves the construction of an external rock berm at the bottom of the slope, while maintaining the geometry and vegetation along the upper portion of the slope. The rock berm will encroach into the river. The berm also protects the toe from erosion.
- **Slope Flattening:** Involves re-grading the slope at a shallower angle that will be stable. Removal of the existing vegetation and loss of horizontal, tableland area is required in

order to accommodate the shallower slope angle. Not feasible in areas where existing structures and dwellings are located in close proximity to the slope. Re-vegetation of the regraded slope is required. Erosion protection measures are required at the toe of the slope.

- Horizontal Drains: Involves the installation of 4 metre long horizontal wick drains through the slope face using hand operated equipment in order to reduce the groundwater levels. The drains could be installed on a regularly spaced grid pattern and inclined from the horizontal to promote gravity drainage. Erosion protection measures should be implemented at the toe of the slope.
- **Full Slope Reconstruction:** This method involves excavating the existing slope and rebuilding with rock fill in benches. Similar to construction of an external toe berm; however, for full slope reconstruction, the rock fill extends up to the crest of the slope. Full slope reconstruction also protects the toe from erosion.
- **Structural Elements:** Involves the installation of sheet piling and tie-backs to strengthen and stabilize the slope. The sheet piling could be installed near the upper portion of the slope and driven to refusal. Tie-backs, installed into bedrock, will likely be required to restrain the top of the piles. Erosion protection measures are required at the toe of the slope.

Further comments on the selection of an appropriate remediation alternative could be provided following the detailed slope stability assessment at each location.

5.2 Detailed Design

It is recommended that GEMTEC be consulted during the detailed design stage to confirm that the information in this report has been interpreted as intended. If required, permitting for in-water stabilization works, such as a Fisheries Act authorization from DFO and a permit under the Endangered Species Act, 2007 associated with potential impacts to SAR habitat, should also be finalized during the detailed design stage.

5.3 Disposal of Excess Soil

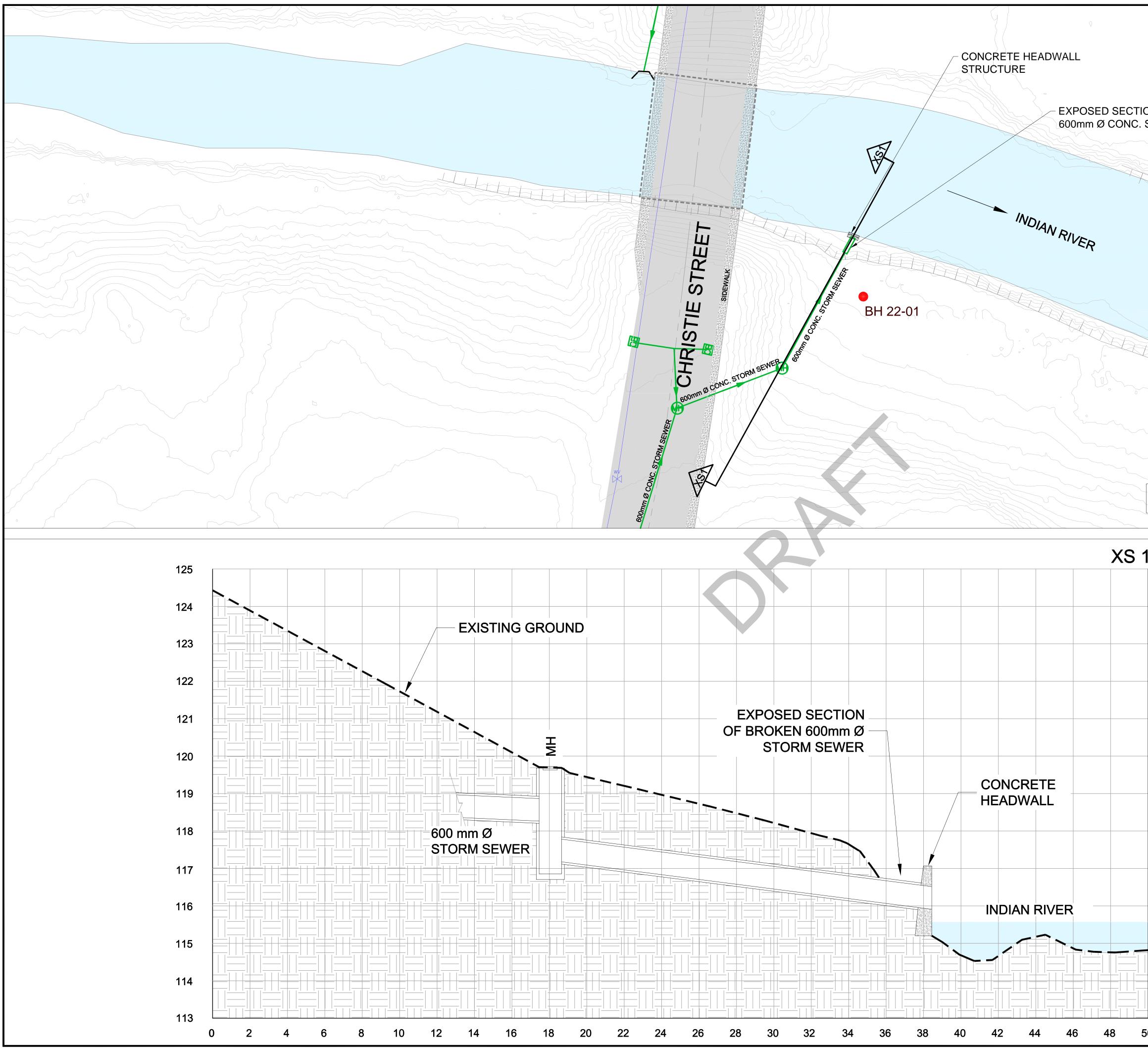
The presence or implications of possible surface and/or subsurface contamination, including naturally occurring source of contamination, are outside the terms of reference for this report. This report does not constitute a Phase II Environmental Site Assessment (ESA) nor does it constitute a contaminated material management plan.

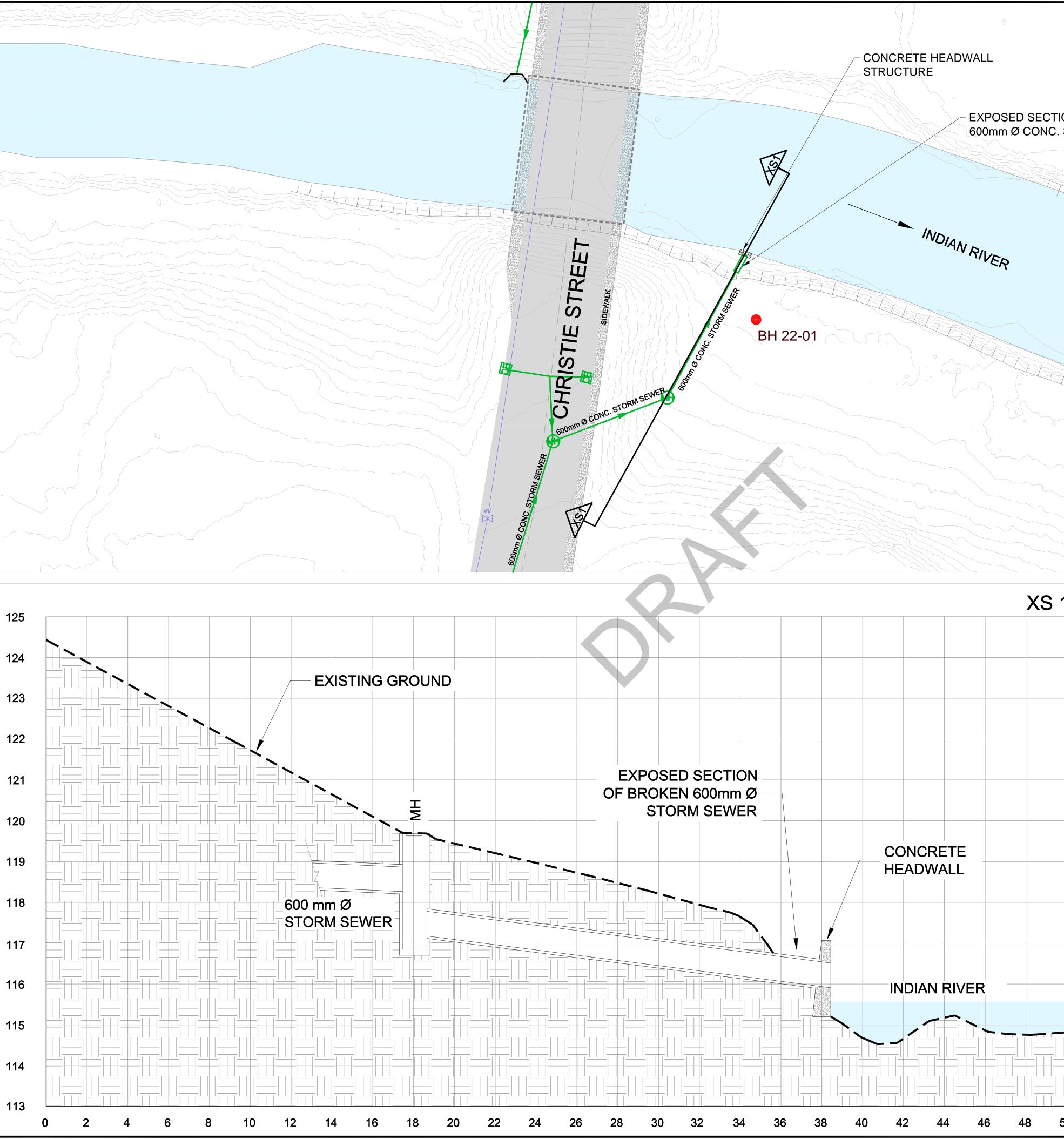
6.0 CLOSURE

It is noted that the information provided in this report pertain only to the geotechnical aspects of the project. It is recommended that the final design drawings be reviewed by the geotechnical engineer to ensure that the guidelines provided in this report have been interpreted as intended.

We trust this report provides sufficient information for your present purposes. If you have any questions concerning this report, please do not hesitate to contact our office.

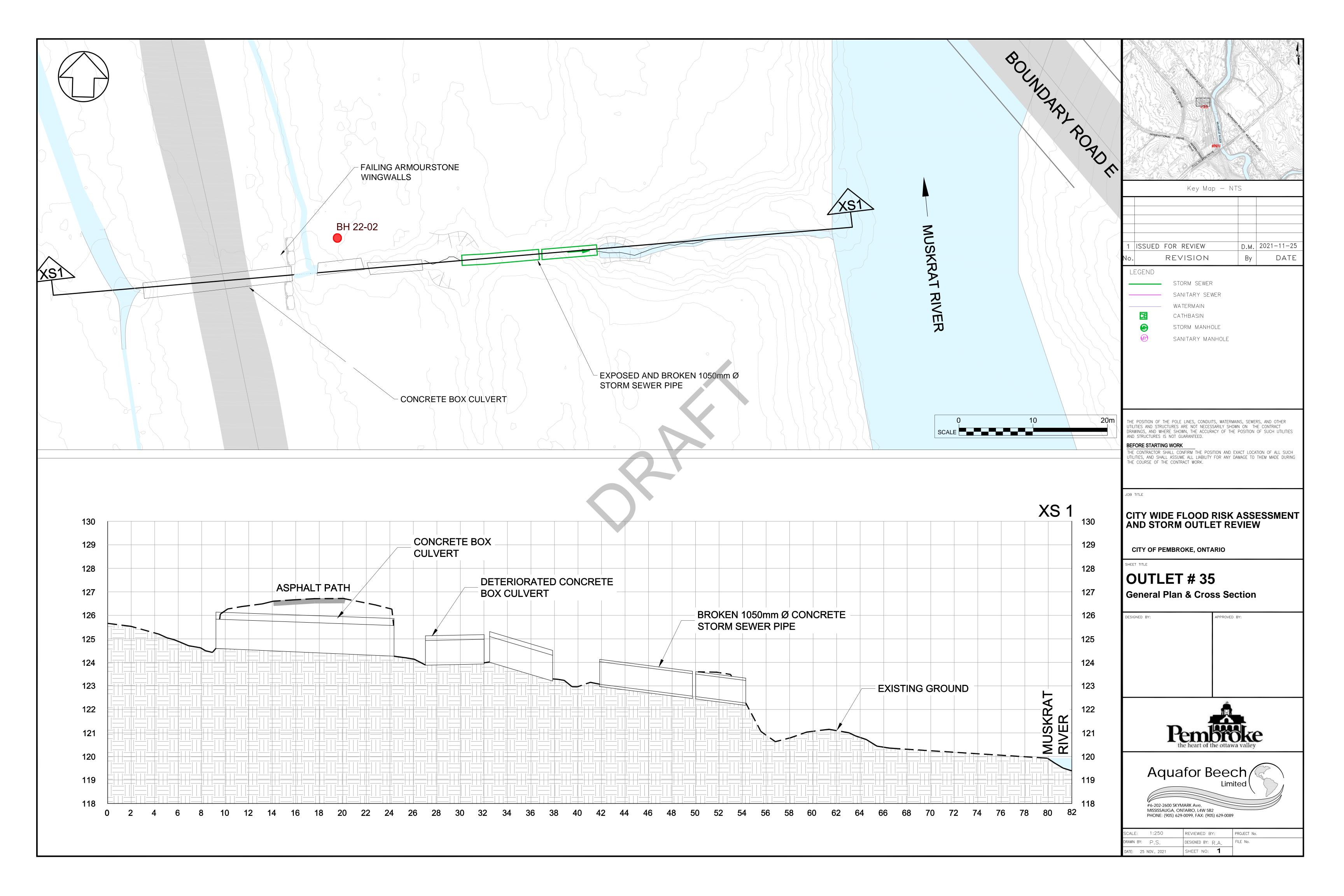
Respectfully,


GEMTEC Consulting Engineers and Scientists Limited


Adam Stamplicoski, C.E.T. Senior Geotechnical Technologist Brent Wiebe, P.Eng Vice President of Operations – Ontario Senior Geotechnical Engineer

APPENDIX A

Christie Street – Outlet 41 Site Plan – Figure A1 Record of Borehole Sheets Laboratory Test Results

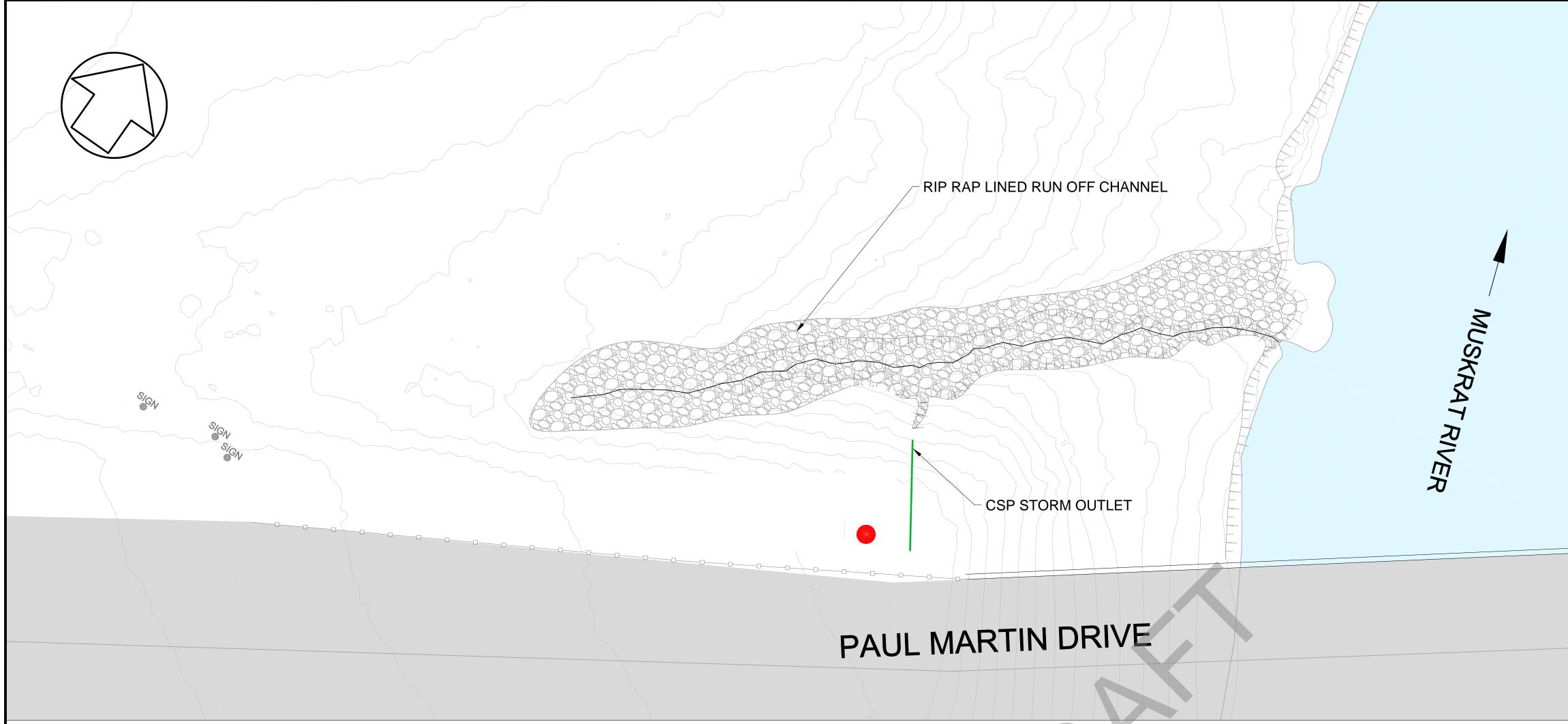

ION OF BROKEN STORM SEWER PIPE	MARY STREET MARY STREET MULLER STR
	1 ISSUED FOR REVIEW D.M. 2021–11–25 No. REVISION By DATE LEGEND STORM SEWER SANITARY SEWER WATERMAIN CATHBASIN Image: Storm Manhole STORM MANHOLE Image: Storm Manhole SANITARY MANHOLE
1 1 125	THE POSITION OF THE POLE LINES, CONDUITS, WATERMAINS, SEWERS, AND OTHER UTILITIES AND STRUCTURES ARE NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING WORK THE CONTRACTOR SHALL CONFIRM THE POSITION AND EXACT LOCATION OF ALL SUCH UTILITIES, AND SHALL ASSUME ALL LIABILITY FOR ANY DAMAGE TO THEM MADE DURING THE COURSE OF THE CONTRACT WORK.
124 123 122	CITY WIDE FLOOD RISK ASSESSMENT AND STORM OUTLET REVIEW CITY OF PEMBROKE, ONTARIO
121	OUTLET # 41 General Plan & Cross Section
119	
118	
117	Pendotoke the heart of the ottawa valley
115	Aquafor Beech
114	#6-202-2600 SKYMARK Ave, MISSISSAUGA, ONTARIO, L4W 5B2 PHONE: (905) 629-0099, FAX: (905) 629-0089
113 50	SCALE:1:250REVIEWED BY:PROJECT No.DRAWN BY:P.S.DESIGNED BY:R.A.DATE:25 NOV., 2021SHEET NO:1

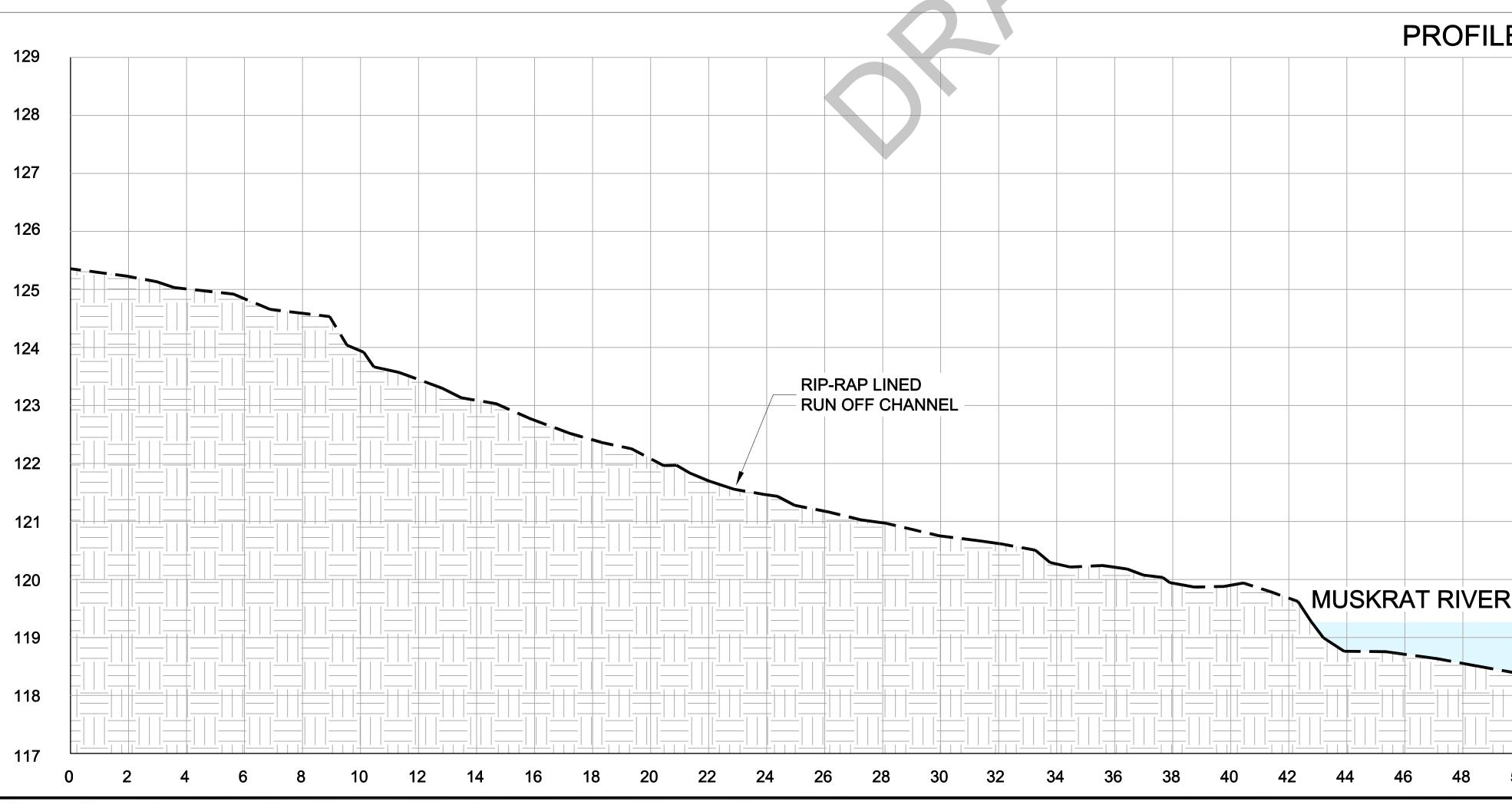
	OO	SOIL PROFILE				SAM	PLES		●P	ENE	TRA), BLO'	NS/0 3), kPA	. (7)	
	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m	▲ ^D _R	YNA ESIS	MIC STAN	PENE ICE, B	TRATIC LOWS	0N 10.3m		v W _P ł	VATE	R CO V		NT, 9	% ⊣w _L	ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIPI INSTALLATIO
+	B		5	. ,			ш.			10	2		30 4	10	50	60			80	9			
0		Ground Surface TOPSOIL (75mm)	- the state	118.67 0.08					:::		· · · · · · · ·	::::	::::		<u> ::</u> :::				: : :		::::		1
		FILL: sand and silt with trace gravel, compact, moist		0.06	1	SS	500	-															
1		Brown becoming grey SAND with SILT,		<u>117.60</u> 1.07	2	SS	500	18	· · · · · · · · · · · · · · · · · · ·		•												
		very loose to loose, moist			3	SS	300	9			· · · · · · · · · · · · · · · · · · ·												
2		- becoming wet at 2.1 metres			4	SS	500	3	•									· · · · · · · · · · · · · · · · · · ·					
3					5	SS	400	4															
,		Grey SILTY CLAY, wet		<u>115.47</u> 3.20	6	SS	500	8										· · · · · · · · · · · · · · · · · · ·					
4				111.10	7	SS	200	8															
		End of Borehole 22-01 at 4.3 metres within silty clay		<u>114.40</u> 4.27																			
5																		· · · · · · · · · · · · · · · · · · ·					
											· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·					
5										· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·												
7											· · · · · · · · · · · · · · · · · · ·												
8												::::											
9										· · ·	· · · · · · · · · · · · · · · · · · ·				- · · ·						· · · · · · · · · · · · · · · · · · ·		
									· · · · · · · · · · · · · · · · · · ·														
)																							

ſ

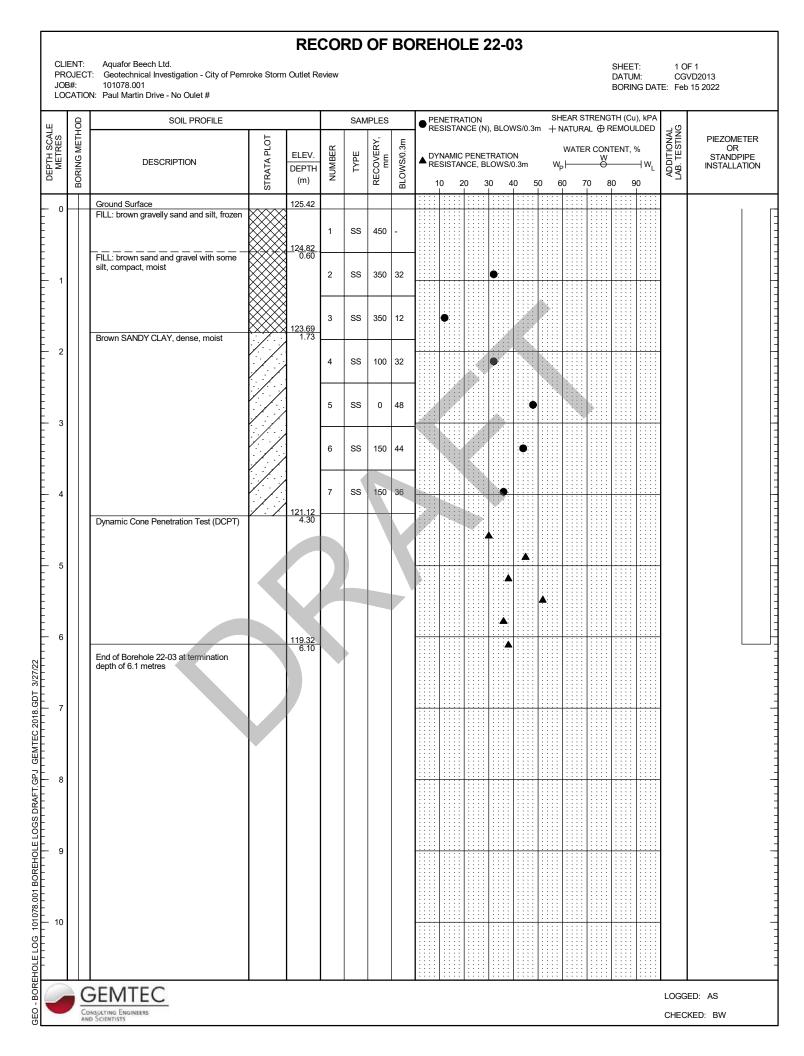
APPENDIX B

Boundary Road Pathway – Outlet 35 Site Plan – Figure B1 Record of Borehole Sheets Laboratory Test Results

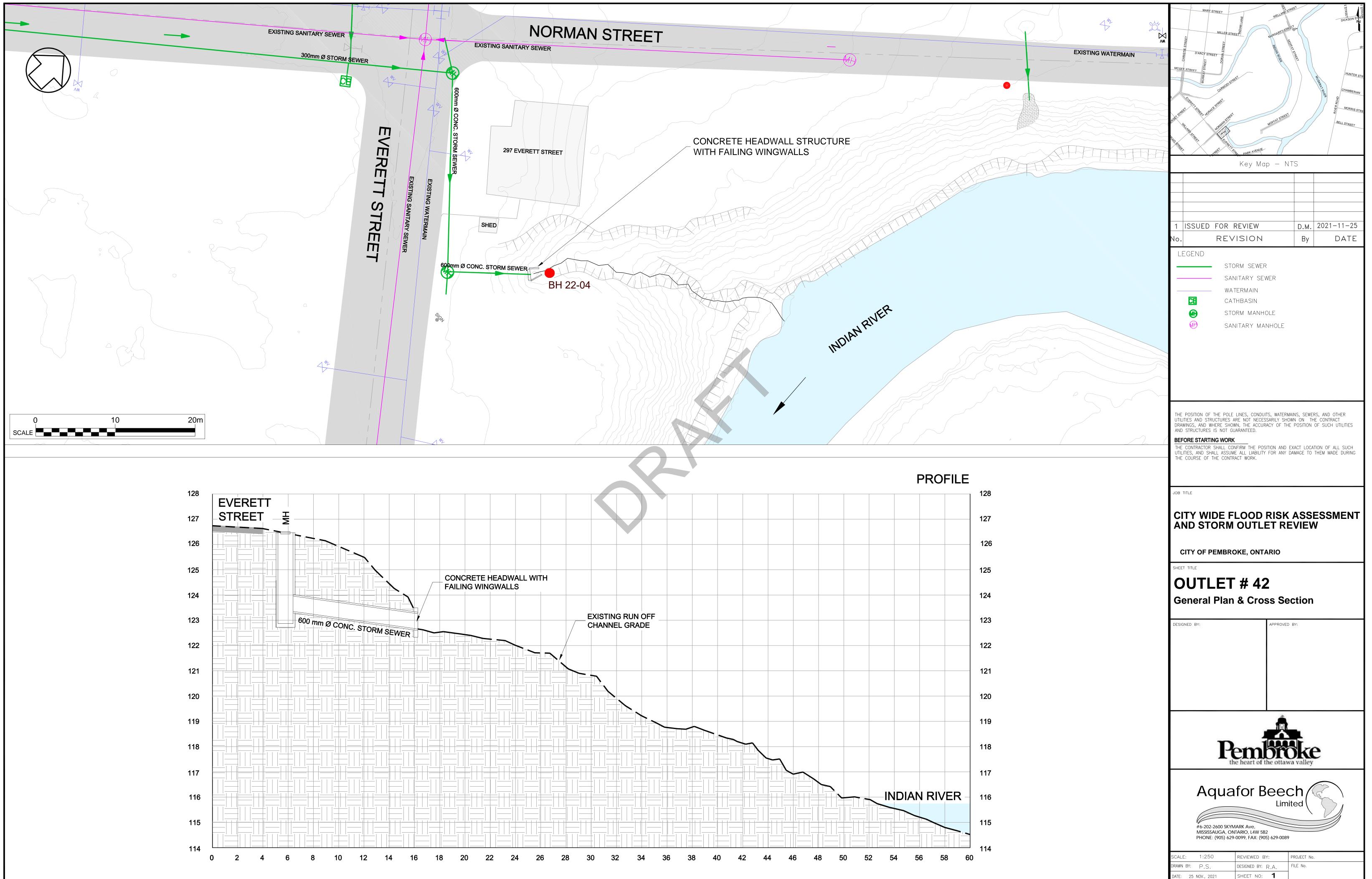

	QO	SOIL PROFILE				SAM	IPLES		●PI		I N), BL	ows	/0.3m	SH	EAR S		GTH (OREMO	Cu), kF ULDE		و
	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m	▲ ^{D'} R	YNAMI ESISTA	ETRAT BLOW			W	WATE		ITENT			PIEZOME OR STANDP INSTALLA
,		Ground Surface FILL: brown gravelly sand with some silt,	××××	125.30																
		Frozen		<u>125.10</u> 0.20	1	SS	400	-				· · · · · · · · · · · · · · · · · · ·	· · · · ·							
					2	SS	300	-			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
		Dark grey to brown SILTY CLAY with trace sand and trace organics (wood)		<u>123.93</u> 1.37	3	SS	350	9	-									· · · · · · · · · · · · · · · · · · ·		
2					4	SS	400	9										· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
				<u>122.25</u> 3.05	5	SS	400	10												
		Brown LEAN CLAY, stiff, wet		3.05	6	SS	600	11										· · · · · · · · · · · · · · · · · · ·		
					7	SS	600	10				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	
				<u>120.42</u> 4.88	8	SS	600	12		•		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							
5		End of Borehole 22-02 at 4.9 metres within lean clay		4.00																
6												· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
											· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		
,													· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
3											· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·							
										· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					1::::	:::	· · · · · · · · · · · · · · · · · · ·		
													· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
											· · · · · · · · · · · · · · · · · · ·									

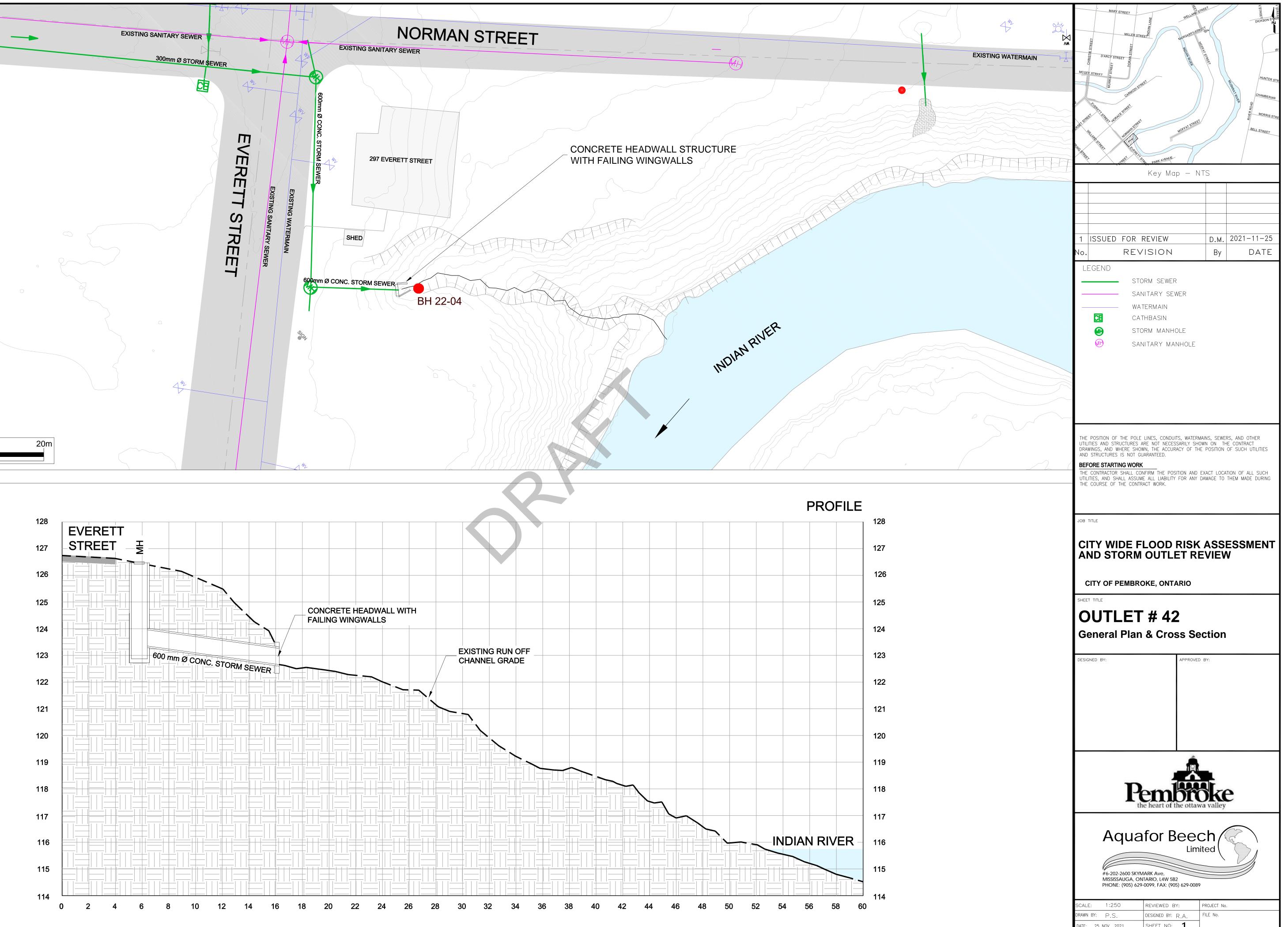

٦

Г


APPENDIX C

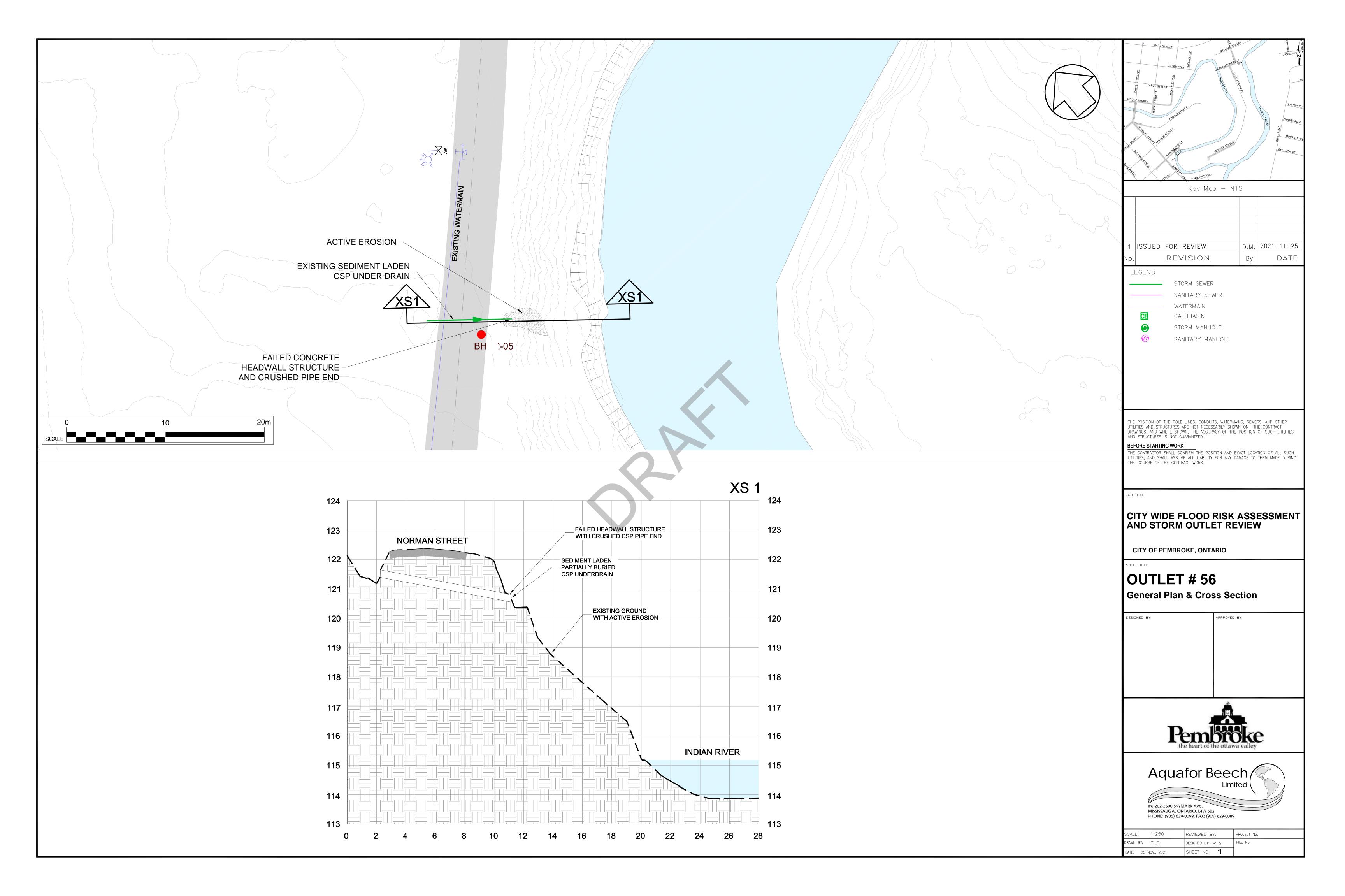
Paul Martin Drive – No Outlet # Site Plan – Figure C1 Record of Borehole Sheets Laboratory Test Results




	Key Map – NTS
	1 ISSUED FOR REVIEW D.M. 2021-11-25 No. REVISION By DATE LEGEND
E 129	THE POSITION OF THE POLE LINES, CONDUITS, WATERMAINS, SEWERS, AND OTHER UTILITIES AND STRUCTURES ARE NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING WORK THE CONTRACTOR SHALL CONFIRM THE POSITION AND EXACT LOCATION OF ALL SUCH UTILITIES, AND SHALL ASSUME ALL LIABILITY FOR ANY DAMAGE TO THEM MADE DURING THE COURSE OF THE CONTRACT WORK.
- 128 - 127	JOB TITLE CITY WIDE FLOOD RISK ASSESSMENT AND STORM OUTLET REVIEW CITY OF PEMBROKE, ONTARIO
126 125	SHEET TITLE OUTLET # UNKNOWN General Plan & Cross Section
124	DESIGNED BY: APPROVED BY:
122	
121	Pembroke the heart of the ottawa valley
R 120 119	Aquafor Beech
118	#6-202-2600 SKYMARK Ave, MISSISSAUGA, ONTARIO, L4W 5B2 PHONE: (905) 629-0099, FAX: (905) 629-0089 SCALE: 1:250 REVIEWED BY: PROJECT No.
50	DRAWN BY: P.S. DESIGNED BY: R.A. FILE No. DATE: 25 NOV., 2021 SHEET NO: 1

APPENDIX D

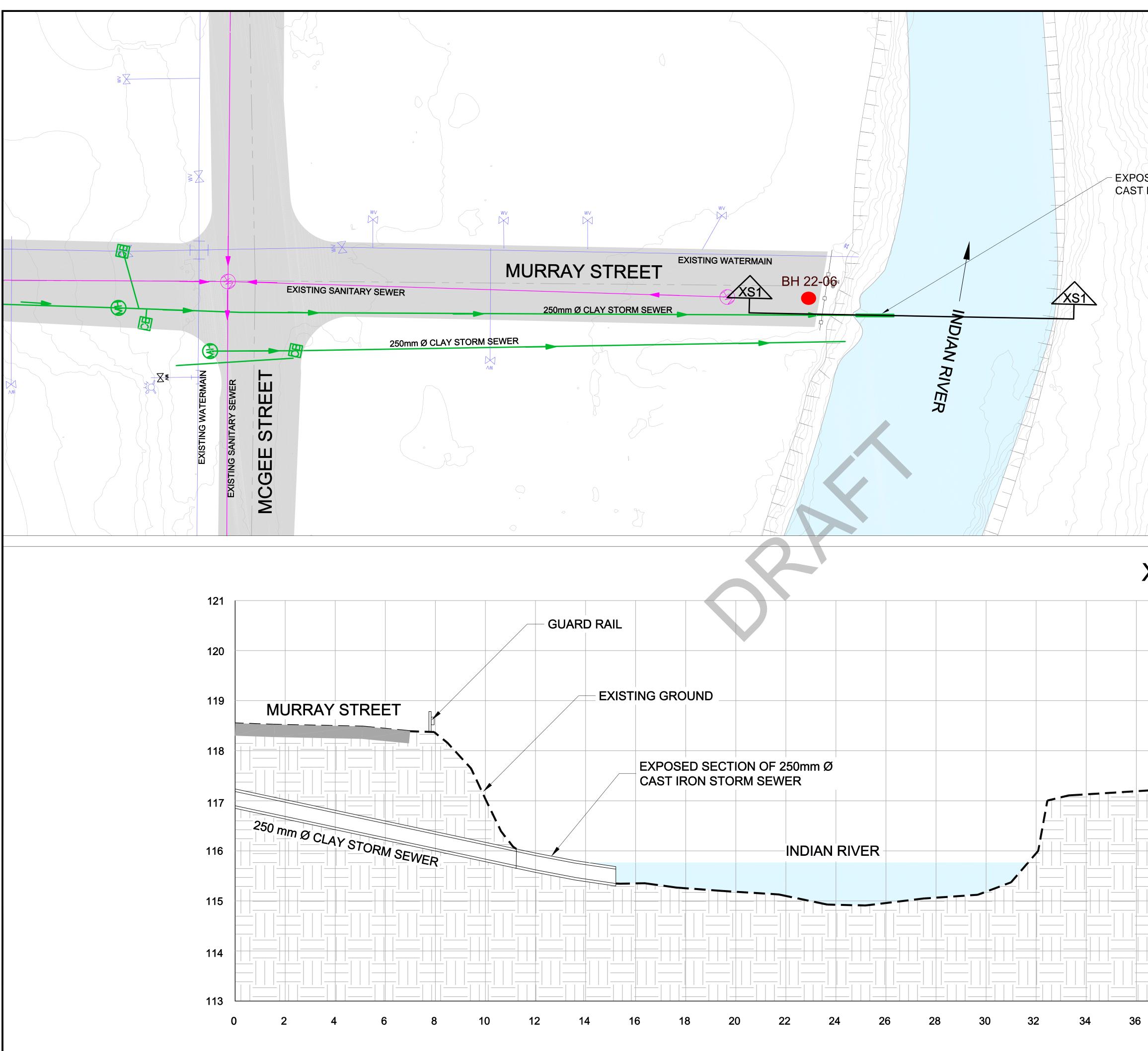
Everett Street – Outlet 42 Site Plan – Figure D1 Record of Borehole Sheets Laboratory Test Results

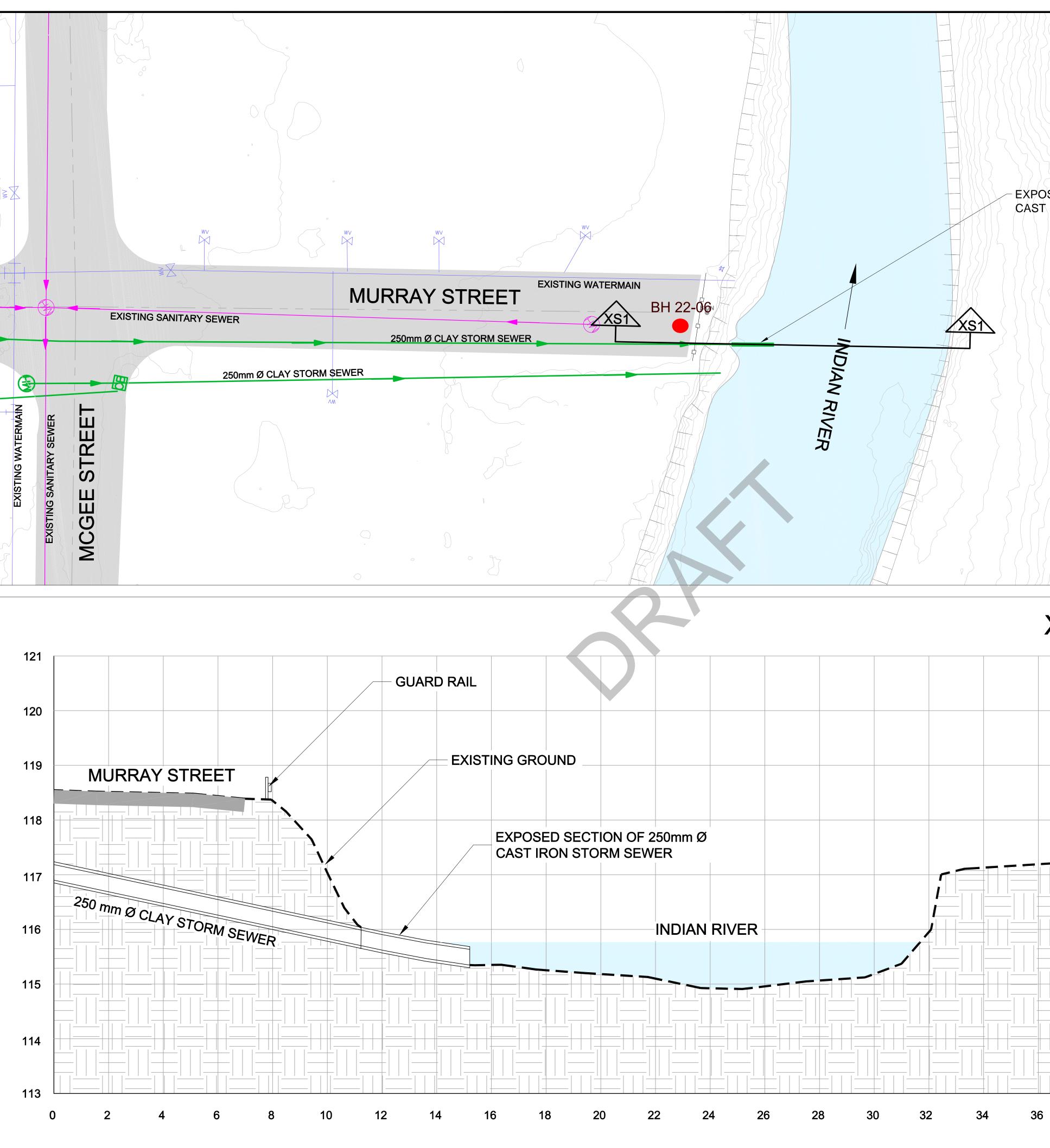


8	SOIL PROFILE				SAM	IPLES		● PE	NETR	ATION	I N) BI	ows/	0.3m	SHE	EAR S	TRENO	GTH (C	u), kPA ULDED	JU	
BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m	▲ ^{DY} RE	NAMIC SISTA		ETRAT BLOW 30			W _P	WATE	R CON W	ITENT		ADDITIONAL LAB. TESTING	PIEZOM OF STAND INSTALL
T	Ground Surface	0	122.55							:::	: : : :	: ::	:::	:::	::::		:::			
	FILL: Dark brown sand and silt, some gravel, trace concrete debris			1	SS	300	-													
			<u>121.33</u> 1.22	2	SS	150	35							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
	Dark grey CLAYEY SAND, loose, moist		1.22	3	SS	0	9													
				4	SS	200	7													
	Dark Croy CLAVEV CILT from project		<u>119.50</u> 3.05	5	SS	200	7													
	Dark Grey CLAYEY SILT, firm, moist		0.00	6	ss	250	12													
				7	SS	450	52								· · · · · · · · · · · · · · · · · · ·				-	
	Dark Grey SILTY CLAY, stiff, wet		117.67 4.88	8	SS	350	44													
	- becoming wet at 4.9 metres			9	SS	500	12		•			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						
				10	ss	400	7												-	
	Grey clayey sand and silt with some gravel (GLACIAL TILL), compact, moist		116.15 6.40	11	ss	300	30				•	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·						
	Dynamic Cone Penetation Test (DCPT)	A.A.	115.55 7.00									· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						
																			_	
												· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						
														· · · · · · · · · · · · · · · · · · ·						
			<u>112.31</u> 10.24																	
	End of Borehole 22-04 at 10.2 metres due to DCPT refusal		10.24																ΤI	

APPENDIX E

Norman Street – Outlet 56 Site Plan – Figure E1 Record of Borehole Sheets Laboratory Test Results

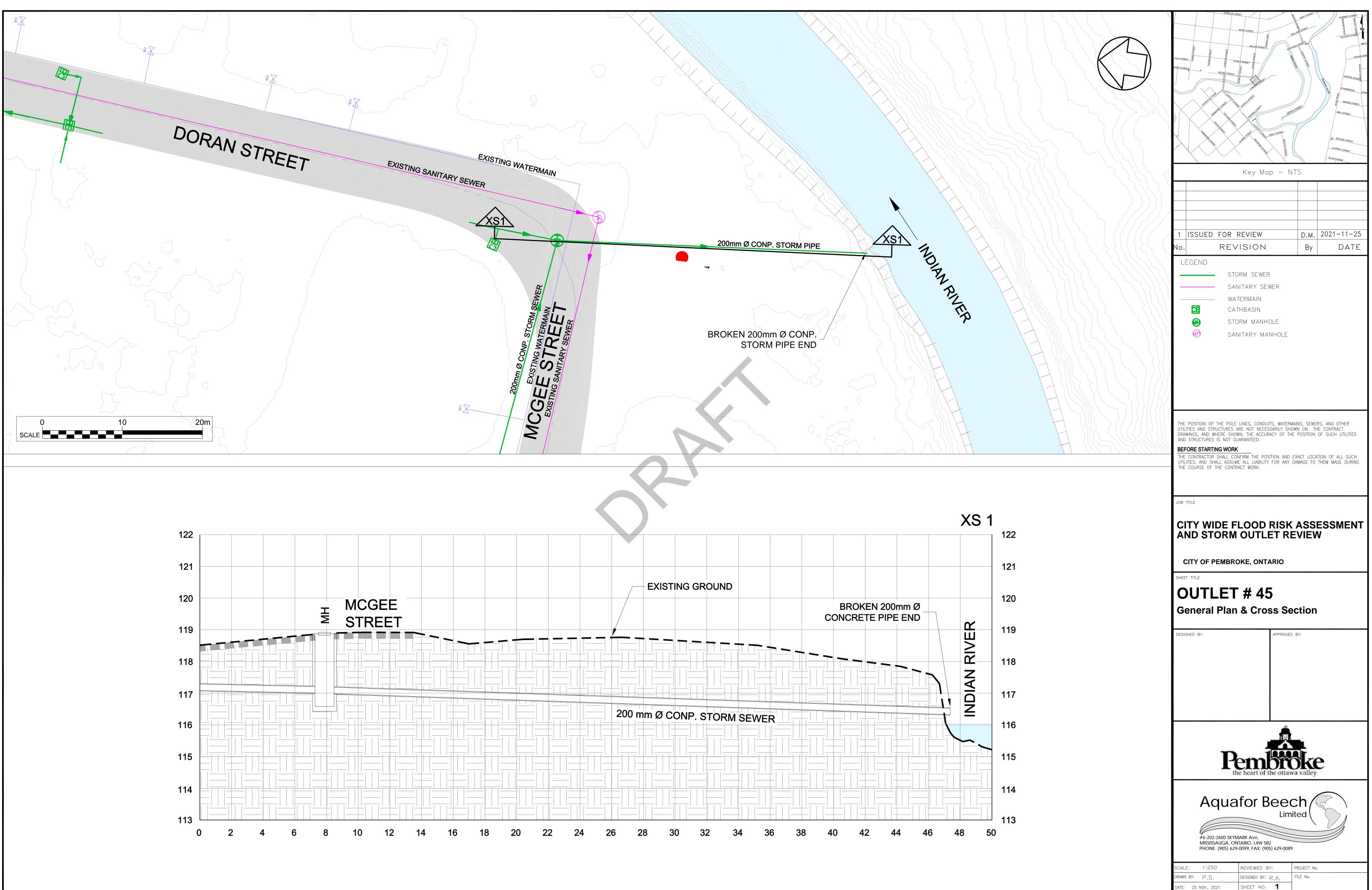

	ДОН	SOIL PROFILE				SAN	/IPLES		● PE RE	NETR/ SISTA	ATION NCE (N	I), BLO'	WS/0.:	SH 3m +1	IEAR S NATUR					AC AC	
	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	RECOVERY, mm	BLOWS/0.3m			C PENE NCE, B			W	Ρ'	0			WL	ADDITIONAL LAB. TESTING	PIEZOMET OR STANDPIF INSTALLAT
L	×		ST	(m)	_		2	В	1	0 2	20 : 	30 4	40 	50 (50 7 	70 	80 	90			
ŀ	+	Ground Surface ASPHALTIC CONCRETE (50mm)	XXXX	122.44 0.05													::	:::			
		ROAD BASE: brown crushed sand with gravel and some silt, frozen ROAD SUBBASE: brown gravelly sand with trace silt, frozen		0.20 121.94 0.50	1	GS		-										· · · · · · · · · · · ·			
		FILL: brown sand and silt with trace gravel, compact			2	SS	350	35										· · · · · · · · · · · · · · · · · · ·			
		Brown SILTY SAND, loose, moist		120.94 1.50	3	SS	450	6										· · · · · · · · · · · · · · · · · · ·			
				120.00														· · · · · · · · · · · · · · · · · · ·			
		Brown becoming grey SILTY CLAY, stiff to very stiff, moist		120.00 2.44	4	ss	450	9										· · · · · · · · · · · · · ·			
					5	ss	500	7										· · · · · · · · · · · · · · · · · · ·			
					6	SS	500	4										· · · · · · · · · · · · · · · · · · ·			
											}							· · · · · · · · · · · · · · · · · · ·	>>-	-	
					2	_				Ð								+			
		Grey clayey sand and gravel (GLACIAL TILL), compact, moist		<u>116.64</u> 5.80	7	SS	500	1										· · · · · · · · · · · · · · · · · · ·			
					8	SS	300	21			•							· · · · · · · · · · · · · · · · · · ·			
					9	SS	300	15		•								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
		- becoming wet at 7.2 metres			10	SS	300	11										· · · · · · · · · · · · · · · · · · ·			
		End of Borehole 22-05 at 8.2 metres		<u>114.24</u> 8.20					-									· · · · · · · · · · · · · · · · · · ·			
		within glacial till																· · · · · · · · · · · · · · · · · · ·			

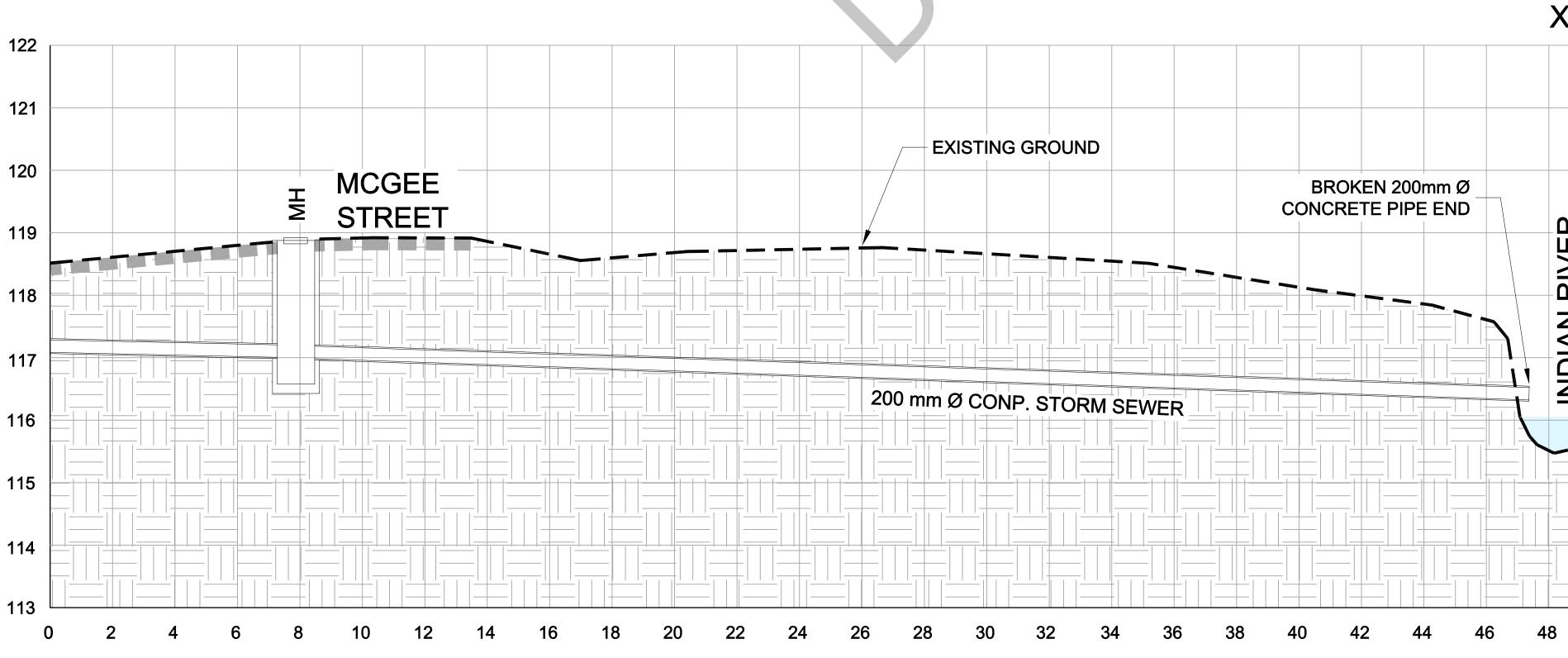

٢

Site Loca Property (Inspected			File No. Inspection Date:
1.	SLOPE INCLINATION		Rating Valu
	degrees	horiz. : vert.	Kuting valu
	a) 18 or less	3:1 or flatter	0
	b) 18 - 26	2:1 to more than $3:1$	
	c) more than 26	steeper than 2 : 1	16
2.	SOIL STRATIGRAPHY		
	a) Shale, Limestone, G	Granite (Bedrock)	0
	b) Sand, Gravel		6
	c) Glacial Till		9
	d) Clay, Silt		
	e) Fill f) Leda Clay		T6 24
			24
3.	a) None or Near botto		
	a) None or Near bottob) Near mid-slope onl	5	
	c) Near crest only or,		
			12
4.	a) 2 m or less		
	a) 2 m or less b) 2.1 to 5 m		
	c) 5.1 to 10 m		
	d) more than 10 m		
5.	VEGETATION COVER ON	SLODE FACE	
э.		wy shrubs or forested with mature trees	0
		lostly grass, weeds, occasional trees, shrubs	
	c) No vegetation, bare		8
6.	TABLE LAND DRAINAGE		
0.		apparent drainage over slope	0
		r slope, no active erosion	2
	c) Drainage over slope	e, active erosion, gullies	
7.	PROXIMITY OF WATERC	OURSE TO SLOPE TOE	
	a) 15 metres or more f	rom slope toe	0
	b) Less than 15 metres	from slope toe	6
8.	PREVIOUS LANDSLIDE A	CTIVITY	
	a) No		0
	b) Yes		6
	SLOPE INSTABILITY RATING	RATING VALUES INVESTIGATION TOTAL REQUIREMENTS	total 46
1.	Low potential	< 24 Site inspection only, confirmation	report letter
2.	Slight potential	25-35 Site inspection and surveying, pre	
3.	Moderate potential	> 35 Boreholes, piezometers, lab tests,	
NOTES	cheese and a second	and acta contra company total active active active to the	aninom anto
NOTES:		om each category; compare total rating value with above re ody (stream, creek, river, pond, bay, lake) at the slope toe;	
		be evaluated in detail and, protection provided if required.	

APPENDIX F

Murray Street – Outlet 46 Site Plan – Figure F1 Record of Borehole Sheets Laboratory Test Results

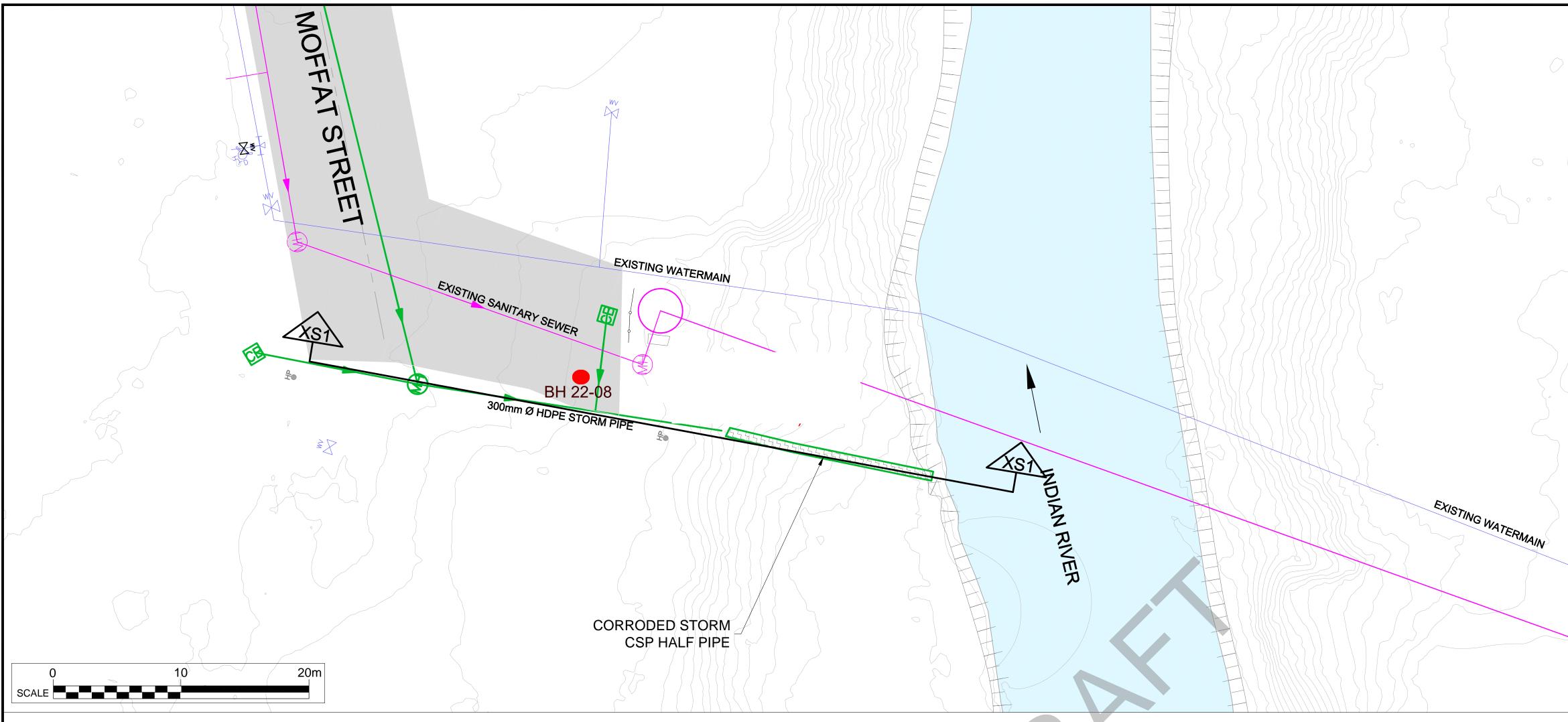

DSED SECTION OF 250mm Ø IRON STORM SEWER PIPE	MARY STREET WELL STREET WELL STREET WELL STREET WE WILL BE STREET
	I ISSUED FOR REVIEW D.M. 2021-11-25 No. REVISION By DATE LEGEND
0 10 20m SCALE 3 3 3 3 1 1 1 1 1 1 1	THE POSITION OF THE POLE LINES, CONDUITS, WATERMAINS, SEWERS, AND OTHER UTILITIES AND STRUCTURES ARE NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING WORK THE CONTRACTOR SHALL CONFIRM THE POSITION AND EXACT LOCATION OF ALL SUCH UTILITIES, AND SHALL ASSUME ALL LIABILITY FOR ANY DAMAGE TO THEM MADE DURING THE COURSE OF THE CONTRACT WORK. JOB TITLE
120 119	CITY OF PEMBROKE, ONTARIO SHEET TITLE OUTLET # 46 General Plan & Cross Section
	DESIGNED BY: APPROVED BY:
	Pendeta the ottawa valley
	Aquafor Beech Limited
38	SCALE:1:250REVIEWED BY:PROJECT No.DRAWN BY:P.S.DESIGNED BY:R.A.DATE:25 NOV., 2021SHEET NO:1

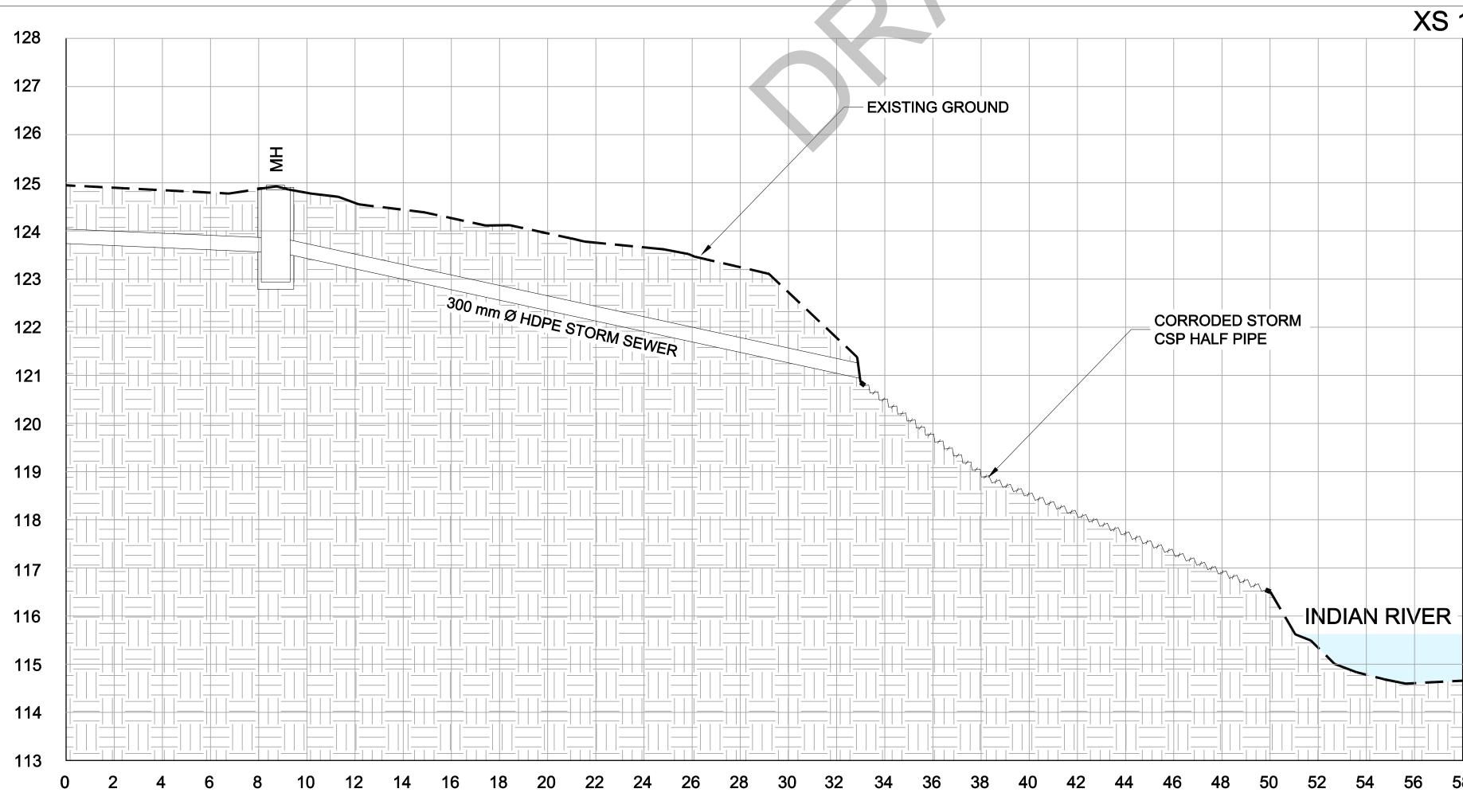

	8	SOIL PROFILE				SAM	IPLES		● PE	ENETRA ESISTA		1 (N) F	BLOV	/S/0.3i		IEAR S					ں ر	
MEIKES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m	▲ ^{D'} RI	(NAMIC ESISTA	C PEN NCE,	IETR BLO	ATIO WS/0	N).3m	W	WATE	R CO V		IT, %	, Hw _L	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATIO
_	ă		ST	. ,			Ľ.	B		10 : ::::	20	30	4		50 E	i0 	70 :::	80	90)		
0	-	Ground Surface ASPHALTIC CONCRETE (50mm)	XXXX	118.58 0.05																		
		ROAD BASE: brown crushed sand with gravel and some silt, frozen ROAD SUBBASE: brown sand with some gravel and some silt, frozen		0.21	1	GS		-					· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
1		Brown SILTY SAND, loose, moist		117.56 1.02	2	ss	600	36					•						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
2					3	SS	400	4	•									· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
					4	SS	400	2	•				· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·			
3		Grey SILTY CLAY with sand seams, firm, wet		11 <u>5.38</u> 3.20	5	ss	400	5	•										· · · · · · · · · · · · · · · · · · ·			
4		- becoming wet at 3.2 metres			6	SS	600	1										· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
-		End of Borehole 22-06 at 4.6 metres within silty clay		<u>114.01</u> 4.57									· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
5													· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
6													· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
													· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
7												· · · · · · · · · · · · · · · · · · ·						I I I I I I	· · · · · ·			
8																						
9																						
8 9 0													· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·				
0																						

ſ

APPENDIX G

Doran Street – Outlet 45 Site Plan – Figure G1 Record of Borehole Sheets Laboratory Test Results





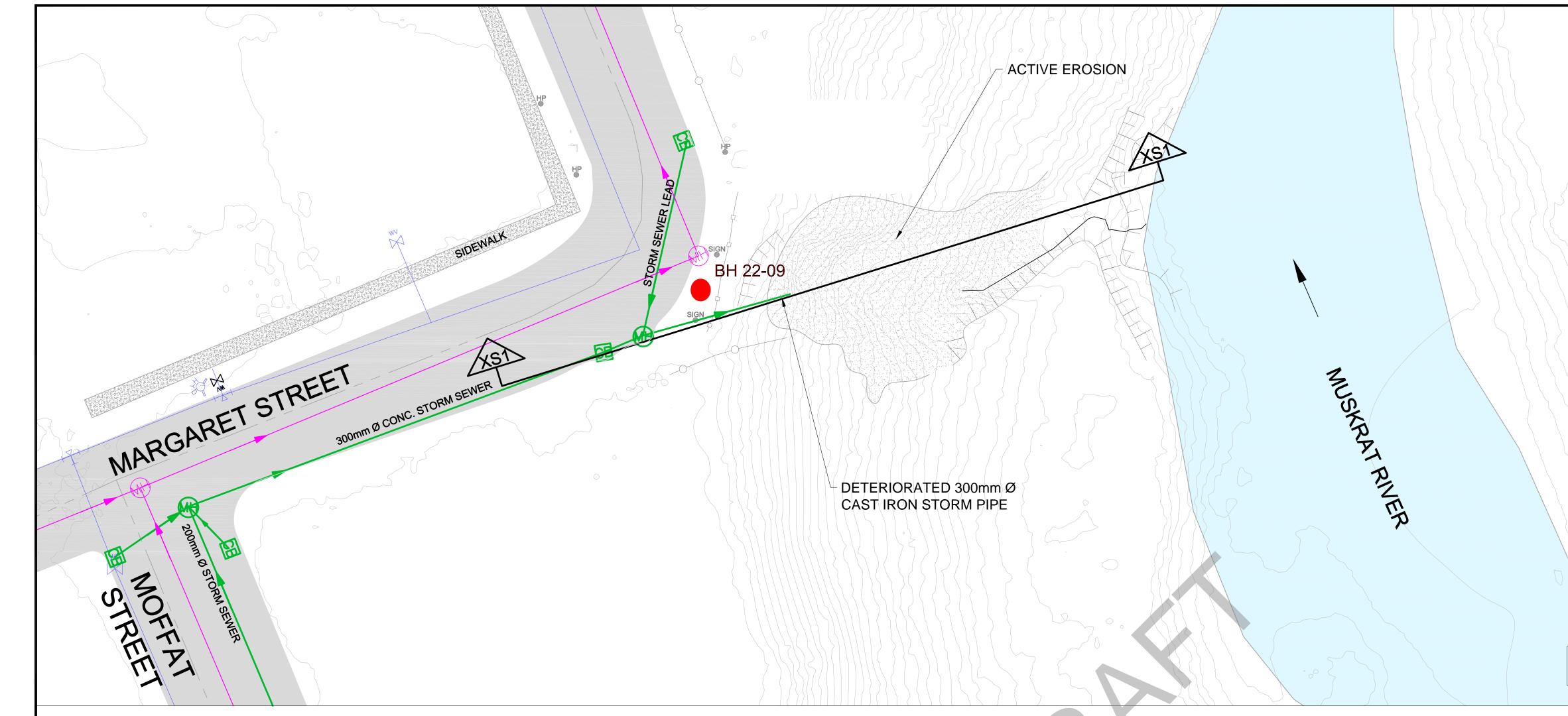
į	3	SOIL PROFILE				SAN	IPLES		●PI	ENE		TION	BLO	NS/0.3	S m +	HEAF		RENG	TH (C	ı), kPA JLDED	, U	
	BURING METHUU	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m	▲ ^{D'} RI	YNAI ESIS	MIC	PENET	ratio _ows/	0N 0.3m	v	wa v _P ⊢	TER	CON W	TENT,	% ⊣w _L	ADDITIONAL LAB. TESTING	PIEZOMET OR STANDPI INSTALLAT
(n I		SI	. ,			ш	B		10	2				50	60	70		0	90 ::::		
⊢		Ground Surface FILL: dark brown to brown sand with		118.78							::											
		some silt and trace gravel, frozen			1	GS		-			· · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·					
		Brown SILTY SAND with trace gravel, moist		<u>117.82</u> 0.96	2	ss	400	12		•	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·				_	
					3	ss	400	7			· · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·				-	
		- becoming wet at 2.3 metres			4	SS	400	3	•													
											::	<u></u> 			::: :::							
		- split-spoon refusal due to organic wood material at about 3.3 metres		<u>115.12</u> 3.66	5	SS	200	50/2	ōmm -								· · · · · · · · · · · · · · · · · · ·					
		Grey SILTY CLAY, firm, wet	V/	0.00							::											
			\vee		6	SS	400	7														
				114.21 4.57																		
		End of Borehole 22-07 at 4.6 metres within silty clay		4.57							· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·				-	
											· · · · · · · · · · · · · · ·											
											· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·					
											· · · · · · · · · · · · · · · · · · ·										-	
											· · · · · · · · · · · · · · · · · · ·						::					
											::											
											· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·					
											· · ·	· · · · · ·									-	
											· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·					
											· · · · · · · · · · · · · · · · · · ·											

APPENDIX H

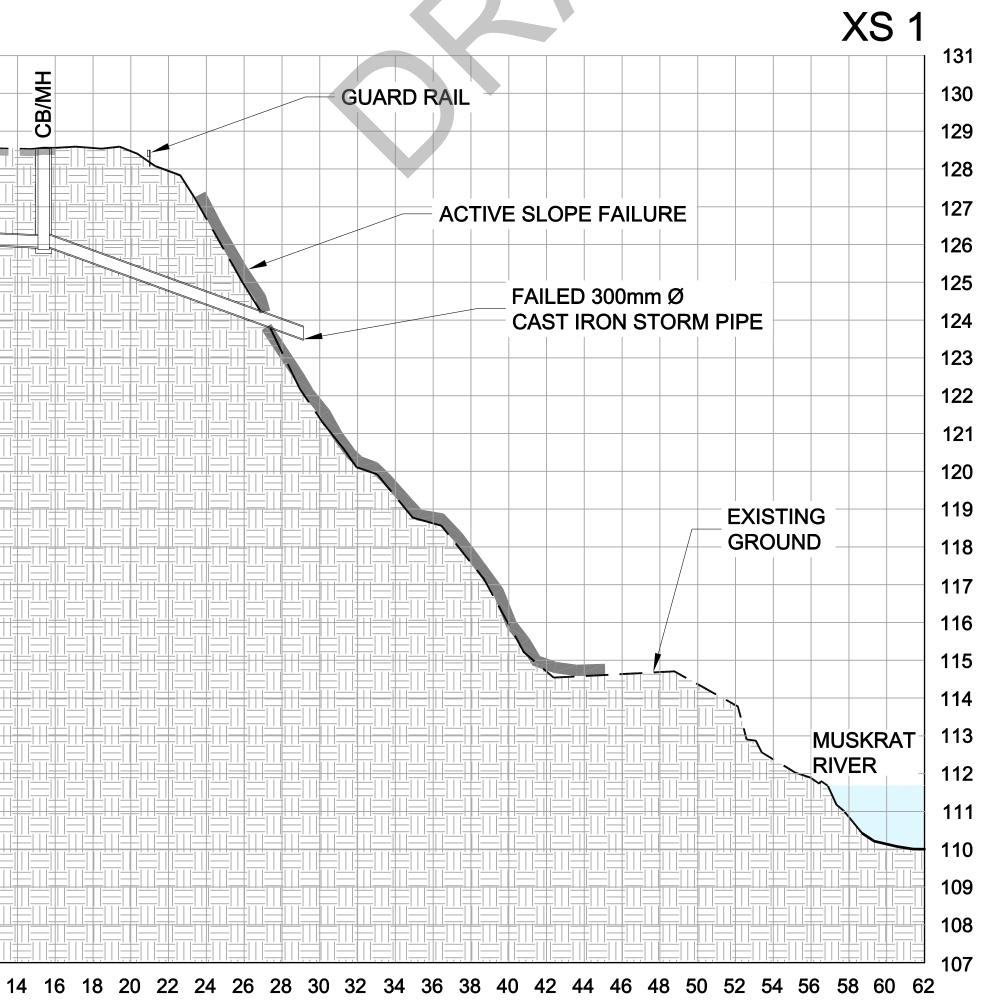
Moffatt Street – Outlet 31 Site Plan – Figure H1 Record of Borehole Sheets Laboratory Test Results

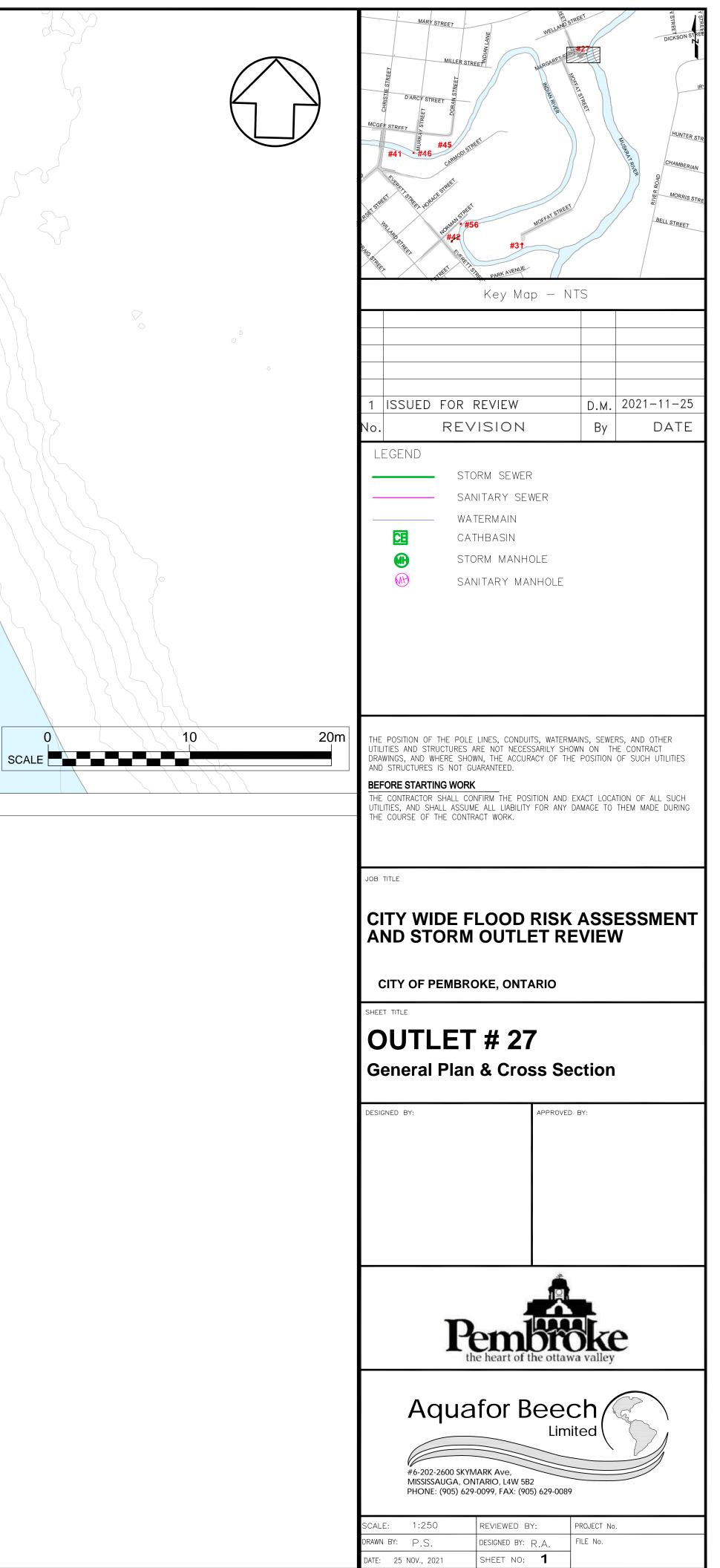
	MARY STREET WELLER STREET WILLER S
	Image: state in the image: state in
1 1 1 128	THE POSITION OF THE POLE LINES, CONDUITS, WATERMAINS, SEWERS, AND OTHER UTILITIES AND STRUCTURES ARE NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING WORK THE CONTRACTOR SHALL CONFIRM THE POSITION AND EXACT LOCATION OF ALL SUCH UTILITIES, AND SHALL ASSUME ALL LIABILITY FOR ANY DAMAGE TO THEM MADE DURING THE COURSE OF THE CONTRACT WORK.
- 127 - 126 - 125	JOB TITLE CITY WIDE FLOOD RISK ASSESSMENT AND STORM OUTLET REVIEW CITY OF PEMBROKE, ONTARIO
- 124 - 123 - 122	SHEET TITLE OUTLET # 31 General Plan & Cross Section
122 121 120	
- 119 - 118 - 117	Periodic the ottawa valley
116 115 114	Aquafor Beech Limited
	PHONE: (905) 629-0099, FAX: (905) 629-0089 SCALE: 1:250 REVIEWED BY: PROJECT No. DRAWN BY: P.S. DESIGNED BY: R.A. FILE Nov., 2021 SHEET NO: 1

	8	SOIL PROFILE			SAMPLES PENETRATION RESISTANCE (N), BLOWS/0.3									SHEAR STRENGTH (Cu), kF 5/0.3m + NATURAL + REMOULDE					(PA ED	0			
	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY, mm	BLOWS/0.3m	▲ ^{DY} RE	NAMIC SISTA	PENE NCE, E	TRATI				WATE	R CON W	ITENT	, %	wL	ADDITIONAL LAB. TESTING	PIEZOM OF STAND INSTALL	۲ P
0 –		Ground Surface ASPHALTIC CONCRETE (40mm)		123.80																			
		ROAD BASE: brown rushed sand with gravel and some silt, frozen FILL: brown silty sand with trace clay, loose, frozen becoming moist		0.24	1	GS		-							· · · · · · · · · · · · · · · · · · ·								
1					2	ss	450	20			•												
2				<u>121.67</u> 2.13	3	SS	600	6							· · · · · · · · · · · · · · · · · · ·								
		Brown SAND with some silt, loose to compact, moist		2.13	4	SS	400	8	•														
3					5	SS	350	15		•					· · · · · · · · · · · · · · · · · · ·								
4					6	SS	400	4							· · · · · · · · · · · · · · · · · · ·								
		- becoming wet at 4.3 metres					100							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								
5		Grey SILTY CLAY, very stiff, wet		<u>118.82</u> 4.98	7	SS	400	15						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								
6					8	SS	200	14		•					· · · · · · · · · · · · · · · · · · ·								
					9	SS	600	5							· · · · · · · · · · · · · · · · · · ·								
7					10	SS	600	3	•					· · · · · · · · · · · · · · · · · · ·	· · ·								
8					11	SS	600	6	•						· · · · · · · · · · · · · · · · · · ·								
																				>>-	-		
9					12	SS	600	2	•						· · · · · · · · · · · · · · · · · · ·					*	-		
0		End of Borehole 22-08 at 9.8 metres within silty clay		<u>114.04</u> 9.76																			L


٦

Г


Site Loca Property Inspected			File No. spection Date:
1.	SLOPE INCLINATION		Rating Value
	degrees	horiz. : vert.	
	a) 18 or less	3 : 1 or flatter	
	b) 18 - 26 c) more than 26	2 : 1 to more than 3 : 1 steeper than 2 : 1	6 16
-			10
2.	a) Shale, Limestone, G	ranita (Padraak)	0
	 a) Shale, Limestone, G b) Sand, Gravel 	anne (Bedrock)	
	c) Glacial Till		
	d) Clay, Silt		
	e) Fill		16
	f) Leda Clay		24
3.	SEEPAGE FROM SLOPE FA		
	a) None or Near botton	n only	
	b) Near mid-slope only		
	c) Near crest only or, F	rom several levels	12
4.	SLOPE HEIGHT		
	a) 2 m or less		0
	b) 2.1 to 5 m c) 5.1 to 10 m		2
	c) 5.1 to 10 m d) more than 10 m		
5.	VEGETATION COVER ON	SLOPE FACE	
		y shrubs or forested with mature trees	0
		stly grass, weeds, occasional trees, shrubs	4
	c) No vegetation, bare		
6.	TABLE LAND DRAINAGE		
		parent drainage over slope	0
		slope, no active erosion	2
	c) Drainage over slope,	active erosion, gullies	
7.	PROXIMITY OF WATERCO		
	a) 15 metres or more fr		
	b) Less than 15 metres	rom slope toe	6
8.	PREVIOUS LANDSLIDE AC	TIVITY	
	a) No		
	b) Yes		6
	SLOPE INSTABILITY RATING	RATING VALUES INVESTIGATION TOTAL REQUIREMENTS	TOTAL
		·	27
1	Low potential	< 24 Site inspection only, confirmation, r	eport letter,
2.	Slight potential	25-35 Site inspection and surveying, prelir	ninary study, detailed report.
3.	Moderate potential	> 35 Boreholes, piezometers, lab tests, su	rveying, detailed report.
NOTES:	a) Choose only one from	n each category; compare total rating value with above requ	irements.
		dy (stream, creek, river, pond, bay, lake) at the slope toe; the	


APPENDIX I

Margaret Street – Outlet 27 Site Plan – Figure I1 Record of Borehole Sheets Laboratory Test Results

131	
130	
129	MARGARET STREET
128	ارچى يېچە بىكى يېڭى يېڭى يېڭى يېڭى 1914 - يىل كىلا كالاركان كالاركان كىلىچى يې يې
127	
126	
125	300 mmØ STORM SEWER
124	
123	
122	
121	
120	
119	
118	
117	
116	
115	
114	
113	
112	
111	
110	
109	
108	
107	
	0 2 4 6 8 10 12 1

T	0	SOIL PROFILE	-	_		SAN	IPLES	-	●PI	ENET		TION	BLO	NS/0.	3m	SHI + N	EAR S	TREN	GTH (Cu), kPA)ULDED	, U	
	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m	▲ ^D R			PENET ICE, BL	RATIC .OWS/				WATE	R COI W			ADDITIONAL LAB. TESTING	PIEZOME OR STANDP INSTALLA
		Ground Surface FILL: brown crushed sand with gravel and some silt, frozen FILL: brown sand and gravel with some silt, frozen FILL: brown silty sand with trace asphalt		128.61 128.36 0.25 128.01 0.60	1	GS		-			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·							
		particles, loose, moist			2	SS	450	9			· · · · · · · · · · · · · · · · · · ·										-	
		Brownish grey SANDY SILT, loose to compact, moist		126.78 1.83	3	SS	500	4			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·									_	
				•	4	SS	400	4														
					5	SS	500	6														
					6	SS	500	9							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					-	
					7	SS	500	4			· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·					-	
					8	SS	400	10		•	· · · · · · · · · · · · · · · · · · ·											
					9	SS	350	10		•	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·						
											· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·					_	
					10	SS	450	14))))))										_	
											· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·							
					11	SS	400	14			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·							
											· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·						

	Б	SOIL PROFILE		1		SAN	IPLES		● ^{PE} RE	NETRA SISTAI	ATION NCE (N	N), BLC	ows/0	0.3m	SHE + N	EAR S' ATUR/	rren ∿L⊕	GTH REM	(Cu) IOUL	, kpa .Ded	ĘĘ	
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m	▲ DY RE	NAMIC SISTAI	PENE NCE, B	TRATI BLOWS	ION 3/0.3m	n	w _P	WATE	NCO F W		NT, %	¦. ⊦w∟	ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIP INSTALLATIO
_	Ĭ		ST	(m)	_		۲ ۲	B	1	0 2	20 :	30	40	50	60) 7	0	80	90)		
1					12	ss	450	12					· · · · · · · · · · · · · · · · · · ·	· · · · · ·					 			
2		- becoming wet at 12.2 metres			13	ss	400	15		•									· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·		
3		Grey SILTY CLAY, very stiff, wet		<u>115.81</u> 12.80															· · · · · · · · · · · · · · · · · · ·			
4					14	SS	600	2	•				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·			
5													· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·			
													· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	× ×	-	
6													· · · · · · · · · · · · · · · · · · ·						 * *<			
7					15	SS	500	2	•										· · · · · · · · · · · · · · · · · · ·			
8				<u>110.01</u> 18.60	16	SS	600	13		•			· · · · · · · · · · · · · · · · · · ·									
9		Grey sand and silt with gravel (GLACIAL TILL), compact, wet End of Borehole 22-01 at 18.9 metres within glacial till		18.60 109.71 18.90																· · · · · · · · · · · · · · · · · · ·		
0													· · · · · · · · · · · · · · · · · · ·									
-																						
1													<u> : :</u> : : : : : :	· · · · ·	· · · ·	· · · · ·			::	· · · · · ·		

Г

Site Loca Property (Inspected		Outlet 27	File No. Inspection Date:
1.	SLOPE INCLINATION		Rating Valu
	degrees	horiz. : vert.	Ū
	a) 18 or less	3:1 or flatter	
	b) 18 - 26	2:1 to more than $3:1$	
	c) more than 26	steeper than 2 : 1	16
2.	SOIL STRATIGRAPHY		
	a) Shale, Limestone, C	franite (Bedrock)	0
	b) Sand, Gravelc) Glacial Till		6 9
	c) Glacial Till d) Clay, Silt		
	e) Fill		
	f) Leda Clay		24
3.	SEEPAGE FROM SLOPE F	ACE	
	a) None or Near botto		Ω
	b) Near mid-slope onl		
	c) Near crest only or,	From several levels	12
4.	SLOPE HEIGHT		·
	a) 2 m or less		0
	b) 2.1 to 5 m		2
	c) 5.1 to 10 m		4
	d) more than 10 m		
5.	VEGETATION COVER ON	SLOPE FACE	r
		vy shrubs or forested with mature trees	
		ostly grass, weeds, occasional trees, shrubs	4
	c) No vegetation, bare		8
6.	TABLE LAND DRAINAGE		
		pparent drainage over slope	0
		r slope, no active erosion	2
	c) Drainage over slope	e, active erosion, gullies	
7.	PROXIMITY OF WATERC		
	a) 15 metres or more f		
	b) Less than 15 metres	ironi siope toe	6
8.	PREVIOUS LANDSLIDE A	CTIVITY	
	a) No b) Yes		
	SLOPE INSTABILITY	RATING VALUES INVESTIGATION	TOTAL
	RATING	TOTAL REQUIREMENTS	52
1	Low potential	< 24 Site inspection only, confirmation	report lattar
1. 2.	Slight potential	25-35 Site inspection only, confirmation Site inspection and surveying, prel	
3.	Moderate potential	> 35 Boreholes, piezometers, lab tests,	
NOTES	a) Chaogo antre fai	and actor any company total vating value with the	aninom outo
NOTES:	a) Uncose only one from b) If there is a water b	om each category; compare total rating value with above rea ody (stream, creek, river, pond, bay, lake) at the slope toe; t	jurrements.
	b) If there is a water b	be evaluated in detail and, protection provided if required.	

civil

civil geotechnical environmental field services materials testing

géotechnique environnementale surveillance de chantier

service de laboratoire des matériaux

APPENDIX J

Proposed Solutions of Sewer Pipes and Catchbasins in the PCSWMM Model

This appendix includes the detailed proposed works for each storm sewer system. All the sewer pipes listed below have modifications in pipe size upgrades and/or inlet/outlet invert elevations in order to meet the 100-year level of service. The orange highlights indicate the modifications in sewer pipe sizes or inverts.

All the catchbasins listed in the tables below have changes in the type of catchbasins and/or the number of catchbasins to increase the flow rate of flood water entering the storm sewer system and reduce flooding on streets. More details can be found in the PCSWMM models for each area with Tag "MOD" to show proposed solutions.

	•	isting Condit	ion		posed Condi	
Name	Inlet Elev	Outlet	Diameter	Inlet Elev	Outlet	Diameter
	(m)	Elev (m)	(m)	(m)	Elev (m)	(m)
18_0001	111.033	110.494	0.9	111.033	110.494	1.8
18_0002	111.557	111.033	0.9	111.557	111.033	1.8
18_0003	112.807	111.557	1.2	112.807	111.557	1.65
18_0004	114.074	112.807	1.2	114.074	112.807	1.5
18_005	117.454	114.074	1.2	117.454	114.074	1.35
18_008	118.355	117.966	1.2	118.355	117.966	1.35
18_0114	146.45	146.22	0.75	146.062	145.6	1.05
18_012	119.679	117.671	0.525	119.679	117.671	0.75
18_014	119.907	119.818	0.525	119.907	119.818	0.75
18_016	120.09	119.907	0.525	120.09	119.907	0.75
18_017	120.309	120.066	0.525	120.309	120.066	0.75
18_019	120.574	120.309	0.525	120.574	120.309	0.75
18_026	120.99	120.573	0.45	120.99	120.573	0.675
18_037	121.66	121.052	0.375	121.66	121.052	0.525
18_045	120.021	117.454	1.35	117.989	117.454	1.5
18_046	120.158	120.021	1.35	119.452	117.989	1.65
18_048	120.246	120.226	0.9	119.667	119.452	1.65
18_051	121.321	120.726	0.9	120.971	119.667	1.5
18_054	123.664	121.321	0.9	123.664	120.971	1.5
18_058	124.606	123.684	0.9	124.606	123.684	1.5
18_059	124.636	124.606	0.9	124.636	124.606	1.65
18_060	124.7	124.636	0.9	124.7	124.636	1.65
18_063	124.89	124.7	0.9	124.89	124.7	1.65
18_078	126.377	126.233	0.9	125.321	124.89	1.65
18_079	126.958	126.377	0.9	126.356	125.321	1.5
18_081	127.798	126.958	0.9	127.683	126.356	1.5
18_082	128.16	127.938	0.75	128.16	127.824	1.35
18_084	132.534	128.344	0.75	132.234	128.344	1.05

Table J.1: Proposed Sewer Pipe Information of Amalgamated Model

	Ex	isting Condit	ion	Pro	posed Condi	tion
Name	Inlet Elev	Outlet	Diameter	Inlet Elev	Outlet	Diameter
	(m)	Elev (m)	(m)	(m)	Elev (m)	(m)
18_085	136.153	133.116	0.75	135.75	132.234	1.05
18_086	136.21	136.21	0.75	136.21	135.75	1.05
18_091	139.52	139.09	0.75	139.52	138.8	1.2
18_093	139.75	139.52	0.75	139.75	139.52	1.2
18_095	139.91	139.75	0.75	139.91	139.75	1.2
18_097	142.2	140.06	0.6	142.2	140.06	0.825
18_099	144.7	142.2	0.6	144.7	142.2	0.825
18_101	145.34	145.03	0.75	144.932	144.7	1.2
18_103	145.77	145.34	0.75	145.259	144.932	1.2
18_106	146.15	145.77	0.75	145.55	145.259	1.2
18_109	146.22	146.15	0.75	145.6	145.55	1.2
18_110	146.366	146.28	0.45	145.8	145.6	1.05
18_117	146.9	146.496	0.75	146.528	146.062	1.05
18_119A	147.05	147.018	0.75	146.762	146.7	0.975
18_119B	147.018	146.92	0.75	146.7	146.528	1.05
18_123	147.166	147.05	0.75	146.9	146.762	0.9
18_125	147.45	147.166	0.75	147.137	146.9	0.9
18_129a	147.556	147.503	0.75	147.243	147.2	0.825
18_129b	147.503	147.454	0.75	147.2	147.137	0.825
18_159	147.895	147.57	0.75	147.643	147.243	0.75
18_160	147.919	147.9	0.75	147.674	147.643	0.75
18_163	148.364	147.932	0.75	147.8	147.674	0.75
18_165	149.349	148.63	0.5	148.5	147.8	0.45
18_167	150.117	149.715	0.3	149.087	148.5	0.45
18_169	150.277	150.202	0.3	149.3	149.087	0.375
18_170	150.495	150.362	0.3	149.465	149.3	0.375
18_171	150.693	150.495	0.3	150.1	149.465	0.375
18_180	145.812	145.87	0.525	145.812	145.528	1
18_181	145.863	145.719	0.525	145.528	145.464	1
18_183	140.25	136.617	0.6	139.8	135.75	0.825
18_184	141.345	140.218	0.6	140.7	139.8	0.825
18_187	141.521	141.328	0.675	140.9	140.7	1.05
18_188	141.714	141.56	0.675	141.1	140.9	1.05
18_189	141.822	141.758	0.675	141.293	141.1	1.05
18_190	142.026	141.81	0.675	141.688	141.293	1.05
18_193	142.282	142.109	0.675	142.1	141.688	1.05
18_195	142.591	142.54	0.375	142.591	142.54	0.45
18_196	144.122	142.662	0.3	143.7	142.662	0.375
18_199	143.583	143.018	0.6	142.683	142.1	0.825
18_2	120.578	120.522	0.825	120.578	120.158	0.825
18_201	144.876	143.695	0.6	142.75	142.683	0.9
18_202	145.202	144.876	0.6	142.9	142.75	0.9
18_203	128.011	127.897	0.675	127.751	127.683	1.2
18_204	128.38	128.011	0.675	127.9	127.751	1.05
18_207	128.708	128.46	0.675	128.5	127.9	0.825

	Ex	isting Condit	ion	Pro	posed Condi	tion
Name	Inlet Elev (m)	Outlet Elev (m)	Diameter (m)	Inlet Elev (m)	Outlet Elev (m)	Diameter (m)
18_208	130.746	128.818	0.525	130.746	128.5	0.525
18_3	117.782	117.671	1.2	117.782	117.671	1.35
18_4	117.671	117.454	1.2	117.671	117.454	1.35
18_5	139.09	137.52	0.6	138.8	137.52	0.9
18_6	137.52	136.26	0.6	137.52	136.26	0.9
C2	145.628	145.202	1	145.464	144.703	1
C108	121.602	120.903	0.6	121.602	120.903	0.75
C20	118.765	118.355	1.2	118.765	118.355	1.35
C31	121.956	121.625	0.6	121.956	121.625	0.75
C35	122.838	122.556	0.3	122.838	122.556	0.375
C6	122.21	122.012	0.525	122.21	122.012	0.675

City-Wide Flood Risk Assessment and Storm Outlet Review City of Pembroke

Table J.2: Proposed Catchbasin Information of Amalgamated Model

Catchbasin Name	Existing Condition	Proposed Condition
18_CB_235	FB-CB-x2	HCI-CB-x2
18_CB_236	HC-CB-x1	HCI-CB-x2
18_MH_0005	HC-CB-x1	HCI-CB-x1
18_MH_0039	FB-CB-x2	HCI-CB-x2
18_MH_0051	FB-CB-x2	HCI-CB-x2
18_MH_0072	FB-CB-x1	HCI-CB-x1
18_MH_0113	FB-CB-x2	HCI-CB-x3
18_MH_0115	HC-CB-x1	HCI-CB-x2
18_MH_0129	HC-CB-x1	TFB-CB-x1
18_MH_0151	FB-CB-x1	HCI-CB-x1
18_MH_0153	HC-CB-x1	TFB-CB-x2
18_MH_0155	FB-CB-x1	HCI-CB-x3
18_MH_0176	FB-CB-x1	TFB-CB-x1
18_MH_0178	HC-CB-x1	HCI-CB-x1
18_MH_0180	TFB-CB-x1	HCI-CB-x3
18_MH_0194	FB-CB-x1	HCI-CB-x1
18_MH_0196	FB-CB-x1	TFB-CB-x1
18_MH_0197	FB-CB-x2	TFB-CB-x2
18_MH_0207	HC-CB-x1	HCI-CB-x1
18_MH_0208	HC-CB-x1	TFB-CB-x1
J8	HC-CB-x1	TFB-CB-x1
STT-2-Amal-ABL	FB-CB-x5	HCI-CB-x2
VN_25-Amal_ABL	FB-CB-x1	TFB-CB-x2

	Ex	isting Condit	ion	Pro	posed Condi	tion
Name	Inlet Elev	Outlet	Diameter	Inlet Elev	Outlet	Diameter
	(m)	Elev (m)	(m)	(m)	Elev (m)	(m)
44_0001	115.897	113.277	0.3	115.6	113.277	0.525
44_0004	116.013	115.897	0.3	115.7	115.6	0.525
44_0005	116.925	116.827	0.2	116.625	116.527	0.3
44_0007	117.09	116.925	0.2	116.79	116.625	0.3
44_0008	116.525	116.339	0.2	115.9	115.723	0.525
44_0013	118.814	116.075	0.2	118.814	116.075	0.3
C40	116.913	116.66	0.2	116.6	116.4	0.375
C41_2	116.91	116.741	0.2	116.51	116.4	0.3
C42	116.336	116.033	0.2	115.723	115.7	0.525
C43	116.693	115.839	0.2	116.4	115.839	0.375

Table J.3: Proposed Sewer Pipe Information of Darcy Model

Table J.4: Proposed Catchbasin Information of Darcy Model

Catchbasin Name	Existing Condition	Proposed Condition
44_CB_0005	FB-CB-x2	HCI-CB-x1
44_MH_0003	HC-CB-x1	HCI-CB-x1
VN-1DD-ABL	FB-CB-x1	TFB-CB-x1

Table J.5: Proposed Sewer Pipe Information of Lake St Model

	Existing Condition		Proposed Condition			
Name	Inlet Elev	Outlet	Diameter	Inlet Elev	Outlet	Diameter
	(m)	Elev (m)	(m)	(m)	Elev (m)	(m)
09_0001	110.932	109.279	0.75	110	109.279	1.2
09_0002	111.1	110.969	0.75	111	110	1.05
09_0004	111.402	111.37	0.9	111.052	111	0.9
09_0005	111.467	111.402	0.9	111.155	111.052	0.9
09_0007	111.494	111.467	0.9	111.2	111.155	0.9
09_0008	111.547	111.494	0.9	111.295	111.2	0.9
09_0009	111.69	111.547	0.9	111.551	111.295	0.9
09_0012	111.92	111.758	0.75	111.798	111.551	0.75
09_0014	111.964	111.92	0.75	111.824	111.798	0.75
09_0015	112.123	111.964	0.75	111.866	111.824	0.75
09_0019	112.234	112.123	0.75	111.977	111.866	0.75
09_0021	112.238	112.234	0.75	111.981	111.977	0.75
09_0022	112.501	112.238	0.75	112.201	111.981	0.75
09_0023	112.86	112.501	0.45	112.33	112.201	0.6
09_0036	112.651	112.42	0.3	112.23	112.1	0.45
09_0043	111.237	111.199	0.3	111.237	111.199	0.6
09_0048	112.081	111.84	0.3	112	111.84	0.375
09_0049	112.491	112.081	0.3	112.1	112	0.375
10_0001	110.655	109.936	0.375	110.655	109.936	0.6
10_0002	111.182	110.655	0.375	111.182	110.655	0.6

City-Wide Flood Risk Assessment and Storm Outlet Review City of Pembroke

	Existing Condition		Proposed Condition		tion	
Name	Inlet Elev	Outlet	Diameter	Inlet Elev	Outlet	Diameter
	(m)	Elev (m)	(m)	(m)	Elev (m)	(m)
10_0004	111.343	111.182	0.375	111.343	111.182	0.6
10_0006	111.833	111.362	0.375	111.833	111.362	0.525
10_0007	112.32	111.874	0.375	112.32	111.874	0.45
10_0008	112.874	112.32	0.3	112.874	112.32	0.375
C50	113.28	113.11	0.3	113.28	112.71	0.3
C52	113.11	112.9	0.3	112.71	112.29	0.375
C53	112.9	112.623	0.3	112.29	112.23	0.375

 Table J.6: Proposed Catchbasin Information of Lake St Model

Catchbasin Name	Existing Condition	Proposed Condition
09_MH_0001	FB-CB-x3	HCI-CB-x3
09_MH_0007	FB-CB-x4	HCI-CB-x3
10_MH_0005	FB-CB-x1	TFB-CB-x2

Table J.7: Proposed Sewer Pipe Information of Trafalgar Model

	Existing Condition		Proposed Condition			
Name	Inlet Elev	Outlet	Diameter	Inlet Elev	Outlet	Diameter
	(m)	Elev (m)	(m)	(m)	Elev (m)	(m)
6	125.126	122.873	0.45	125.126	122.873	0.75
06_0001	111.766	109.705	0.9	111.6	109.705	1.35
06_0009_1	113.582	113.28	0.9	113.092	112.796	1.35
06_0009_2	113.28	112.052	0.9	112.796	111.6	1.35
06_0014	114.337	113.575	0.9	113.9	113.092	1.35
06_0018	116.297	114.333	0.9	116.297	113.9	1.2
06_0019	118.016	116.297	0.9	118.016	116.297	1.05
06_0020	119.31	119.18	0.9	118.673	118.5	1.2
06_0022	119.708	119.31	0.9	119.198	118.673	1.2
06_0024	120.096	119.772	0.9	119.639	119.198	1.2
06_0025	120.247	120.126	0.9	119.766	119.639	1.2
06_0028	120.603	120.236	0.9	120.183	119.766	1.2
06_0031	120.868	120.601	0.9	120.57	120.183	1.05
06_0032	121.119	120.839	0.9	120.65	120.57	0.9
06_0033	121.291	121.138	0.9	121.291	120.65	0.9
06_0043	123.61	122.891	0.375	123.61	122.891	0.45
06_0045	124.45	123.635	0.375	124.45	123.635	0.45
06_0048	127.282	125.617	0.375	127.282	125.617	0.45
06_0081	119.885	119.146	0.6	119.002	118.016	0.9
06_0082	120.34	119.995	0.6	119.9	119.002	0.9
06_0083	122.022	120.34	0.6	122.022	119.9	0.825
06_0084	122.438	121.998	0.6	122.438	121.998	0.825
06_0085	122.545	122.492	0.75	122.545	122.492	0.9
06_0086	122.657	122.545	0.75	122.657	122.545	0.9

	Existing Condition		Pro	posed Condi	tion	
Name	Inlet Elev	Outlet	Diameter	Inlet Elev	Outlet	Diameter
	(m)	Elev (m)	(m)	(m)	Elev (m)	(m)
06_0087	122.807	122.715	0.75	122.807	122.715	0.825
06_0089	122.916	122.807	0.75	122.916	122.807	0.825
06_0091	123.201	122.916	0.75	123.201	122.916	0.825
06_0092	123.278	123.201	0.675	123.278	123.201	0.75
06_0093	123.328	123.278	0.675	123.328	123.278	0.75
06_0104	126.013	125.838	0.375	126.013	125.838	0.45
06_0105	126.297	126.013	0.375	126.297	126.013	0.45
06_0106	126.61	126.297	0.2	126.61	126.297	0.375
06_0118	122.245	122.072	0.45	122.245	122.072	0.825
06_0119	122.614	122.235	0.45	122.614	122.235	0.825
06_0122	122.868	122.635	0.45	122.868	122.635	0.825
06_0124	125.922	125.072	0.45	125.922	125.072	0.75
06_0129	125.922	126.55	0.45	126.699	125.922	0.75
06_0131	126.714	126.699	0.375	126.714	126.699	0.675
06_0132	126.782	126.714	0.375	126.782	126.714	0.675
06_0134	130.196	126.86	0.375	130.196	126.86	0.45
06_0135	131.838	130.196	0.375	131.838	130.196	0.45
06_0136	132.466	131.957	0.3	132.2	131.957	0.45
08_0050	126.5	126.31	0.525	126.5	126.052	0.9
08_0051	126.702	126.5	0.45	126.702	126.5	0.9
08_0052	127.24	126.702	0.45	127.24	126.702	0.6
08_0054	127.57	127.24	0.45	127.57	127.24	0.6
08_0056	127.95	127.57	0.45	127.95	127.57	0.525
08_0057	128.06	127.95	0.2	128.06	127.95	0.45
08_0059	132.503	128.58	0.2	132.503	128.58	0.375
08_0060	133.123	132.595	0.2	133.123	132.595	0.3
08_0062	132.762	132.564	0.2	132.762	132.564	0.3
08_0063	132.939	132.762	0.2	132.939	132.762	0.3
08_0067	130.436	127.01	0.3	130.436	127.01	0.375
08_0068	131.741	131.436	0.2	131.741	131.436	0.375
08_0072	132.306	131.759	0.2	132.306	131.759	0.375

 Table J.8: Proposed Catchbasin Information of Trafalgar Model

Catchbasin Name	Existing Condition	Proposed Condition
06_MH_0038	FB-CB-x5	TFB-CB-x4
06_MH_0046	FB-CB-x3	HCI-CB-x2
06_MH_0049	HC-CB-x1	HCI-CB-x1
06_MH_0057	FB-CB-x1	HCI-CB-x1
06_MH_0059A	HC-CB-x1	HCI-CB-x1
06_MH_0069	FB-CB-x2	TFB-CB-x2
06_MH_0077	FB-CB-x2	HCI-CB-x2
06_MH_0080	HC-CB-x1	TFB-CB-x1
06_MH_0099	FB-CB-x1	HCI-CB-x2

Catchbasin Name	Existing Condition	Proposed Condition
06_MH_0101	FB-CB-x2	HCI-CB-x1
08_MH_0044	HC-CB-x1	HCI-CB-x1
08_MH_0046	FB-CB-x1	HCI-CB-x1
08_MH_0048	FB-CB-x1	TFB-CB-x1
J1	HC-CB-x1	HCI-CB-x1
STT-11-ABL	HC-CB-x1	HCI-CB-x1
STT-15-ABL	HC-CB-x1	TFB-CB-x1
VN-10-ABL	HC-CB-x1	HCI-CB-x2